Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.