Abstract:
A positive drive differential assembly including a differential with an input pinion configured to operably engage with a drive shaft so as to permit the drive shaft to rotate the pinion. A bi-directional overrunning clutch assembly is configured to transmit torque between the pinion and two drive axle segments. A pinion disconnect assembly is provided for controlling transmission of rotation to the pinion and including a rotary coupler. A linear actuator is connected to the rotary coupler and configured to translate the rotary coupler between connected and disconnected positions.
Abstract:
A front differential for a four wheel drive vehicle including a pinion assembly with first and second pinions that are engaged with a ring gear assembly with first and second ring gears. The first pinion and first ring gear combination are rotatable independent from the second pinion and second ring gear combination, thus permitting one to rotate relative to the other. The first pinion and first ring gear combination are adapted to rotate one driven shaft, and the second pinion and second ring gear combination are adapted to rotate the other driven shaft. A bi-directional overrunning clutch assembly is engaged with an end of the drive shaft and includes one set of rolls located adjacent to the first pinion shaft, and another set of rolls located adjacent to the second pinion shaft. The clutch assembly control torque transmission between the pinion shafts and the drive shaft.
Abstract:
A bi-directional overrunning clutch differential for controlling torque transmission between a pinion input shaft and at least one output hub. The clutch having a clutch housing and the roll cage mounted within the housing. An engagement control assembly is provided for controlling the relative position of the roll cage with respect to a cam surface on the clutch housing. The engagement control assembly includes an electronically controlled actuation device, such as a coil or solenoid, which when activated causes the roll cage to rotate into a second position relative to the clutch housing to engage the rolls with the cam surface and an outer surface of the hub. A spring is engaged with the clutch housing and has an end engaged with the roll cage for biasing the roll cage into a neutral position when the roll cage is in its second position.
Abstract:
A drive clutch for a continuously variable transmission that includes an input shaft designed to engage with an engine. A sheave assembly is mounted about the input shaft. A bearing assembly separates the sheave assembly from the input shaft such that the input shaft can rotate independently from the sheave assembly. At least one sheave clutch assembly is positioned about the input shaft. The sheave clutch assembly is configured to provide engagement between the sheave assembly and the input shaft when the rotation of the input shaft increases above a certain threshold value. An axial control mechanism is mounted on the input shaft adjacent to the second sheave. The axial control mechanism controls the movement of the second sheave toward and away from the first sheave as a function of the speed of the input shaft. A continuously variable transmission including the drive clutch and a driven clutch is also disclosed.
Abstract:
An electro-magnetic coil assembly mounted to a clutch assembly, the electromagnetic coil assembly including a coil mounted within an annular coil housing and a flexible armature plate. The coil assembly adapted to generate an electromagnetic field between the coil and the armature plate for attracting the armature plate to the coil assembly. The flexible armature plate includes an annular plate with an outer edge and an inner edge, the outer edge defining an outer periphery, the inner edge defining an inner periphery. Tangs spaced about the inner periphery extending radially inward from the inner edge. Inner notches spaced about the inner periphery of the annular plate and extending radially outward to a point at least halfway in the radial direction between the inner edge and the outer edge. Outer notches spaced about the outer periphery between and extending radially inward.
Abstract:
A bi-directional overrunning clutch differential is configured to transmit power from an input shaft to a first output shaft and a second output shaft in a vehicle. The differential includes a differential housing having a first bearing seat and a second bearing seat. A first bearing is carried by the differential housing in the first bearing seat, and a second bearing is carried by the differential housing in the second bearing seat. A first retaining ring secures the first bearing in the first bearing seat, and a second retaining ring secures the second bearing in the second bearing seat. A first output hub is carried by the first bearing for rotation relative to the differential housing, and a second output hub is carried by the second bearing for rotation relative to the differential housing.
Abstract:
A coupling for connecting an input shaft to an output shaft through a bi-directional overrunning clutch assembly. A portion of the input shaft is located within an internal cavity of the output shaft. The bi-directional roller clutch assembly selectively connects and disconnects the input and output shafts from one another. A drive plate is disposed about and attached to a portion of the input shaft so as to rotate in combination therewith. The drive plate is rotationally connected to a clutch housing of the clutch assembly such that rotation of the input shaft produces corresponding rotation of the clutch housing. A torsion spring is positioned within a spring retainer and engaged with at least one of either the spring retainer or the clutch housing. An engagement control assembly controls the engagement and disengagement of the clutch assembly and a coil housing mounted in the cover and a coil mounted in the coil housing, the coil is connected to a switch for controlling the supply of current to the coil. The coil having an active state for generating magnetic flux when power is sent to the coil, and an inactive state when no power is sent to the coil and no magnetic flux is generated. At least one armature plate is disposed about the output shaft and positioned near the coil.
Abstract:
A front differential for a four wheel drive vehicle including a pinion assembly with first and second pinions that are engaged with a ring gear assembly with first and second ring gears. The first pinion and first ring gear combination are rotatable independent from the second pinion and second ring gear combination, thus permitting one to rotate relative to the other. The first pinion and first ring gear combination are adapted to rotate one driven shaft, and the second pinion and second ring gear combination are adapted to rotate the other driven shaft. A bi-directional overrunning clutch assembly is engaged with an end of the drive shaft and includes one set of rolls located adjacent to the first pinion shaft, and another set of rolls located adjacent to the second pinion shaft. The clutch assembly control torque transmission between the pinion shafts and the drive shaft.
Abstract:
A friction drive clutch includes a hub, a thrust plate that rotates with and is axially slidable on the hub, a first housing rotatable with respect to the hub and including at least two first ramped members each having a sloped face, a second housing rotatable with respect to the thrust plate and axially movable together with the thrust plate, the second housing including at least two second ramped members each having a sloped face, a third housing rotatable with respect to the hub, and a spring assembly biasing the thrust plate and second housing axially toward the first housing, wherein when the second housing is rotated in one direction, the sloped faces of the first and second members slide over each other to urge the second housing and thrust plate axially in opposition to the spring assembly to bring the thrust plate into frictional engagement with the third housing.
Abstract:
A bi-directional overrunning clutch includes a housing and first and second hubs substantially coaxially aligned within the housing. A roll cage positions a plurality of rollers in an annular space between each of the hubs and an inner cam surface of the housing. The rollers are adapted to wedgingly engage between the hub and the inner cam for transmitting torque therebetween. End caps are attached to the housing adjacent to the hubs. A friction disk mechanism located on each side of the roll cage includes a roll cage plate attached to the roll cage, an inner hub friction member attached to the hub, a slip disk, and a spring compressed between the slip disk and the inner hub friction member biasing the inner hub friction member into frictional contact with the roll cage plate.