摘要:
A patient supported on a patient support (12) is moved into a bore (22) of a planning imaging device, such as a CT scanner (20). A three-dimensional diagnostic image in three-dimensional diagnostic image space is generated and stored in a memory (130). The patient is repositioned outside of the bore with a region of interest in alignment with a real time imaging device, such as a fluoroscopic imaging device (40). A surgical planning instrument (60), such as a pointer or biopsy needle (62), is mounted on an articulated arm (64). As the instrument is inserted into the region of interest, fluoroscopic images are generated and stored in a memory (140). The coordinate systems of the CT scanner, the fluoroscopic device, and the surgical instrument are correlated (102, 104, 112, 120) such that the instrument is displayed on both the CT images (134) and the fluoroscopic images (50), such that cursors move concurrently along the fluoroscopic and CT images, and the like. In a preferred embodiment in which the cursor on the CT image display is at an intersection of transverse, sagittal, and coronal planes, the displayed planes change as the cursor moves coordinating the displayed CT image planes with the position of the cursor on the fluoroscopic image.
摘要:
A transformable gamma camera includes detectors mounted for circumferential movement with respect to a rotating gantry. The rotating gantry includes radial bores at desired angular positions about the rotating gantry. The stationary gantry includes a docking station such as a bore. A coupling mechanism allows the detectors to be coupled to the bores in the rotating gantry or to the docking station. Each of the detectors is movable radially with respect to the rotating gantry's axis of rotation and tangentially to the imaging region. The gamma camera is readily transformable between 120 degree, orthogonal, and opposed detector configurations; a plurality of aperture sizes can also be defined.
摘要:
A continuous CT scanner (10) for producing real time images includes a stationary gantry portion (12) having an examination region (14) and a rotating gantry portion (20) for continuous rotation about the examination region (14). Mounted to the rotating gantry portion (20) is an imaging x-ray source (22) which produces a fan-shaped x-ray beam (24) having a plurality of rays through the examination region (14). A plurality of radiation detectors (28) are mounted to one of the rotating and stationary gantry portions (20, 12) and are arranged to receive rays of the fan-shaped x-ray beam (24) after the rays have passed through the examination region (14). The plurality of radiation detectors (28) converts detected radiation into electronic data wherein the electronic data includes a plurality of data lines in a fan beam format. A rebinning processor (30) interpolates the electronic data from the fan-beam format to a parallel-beam format. A reconstruction processor (50) then convolves and backprojects the electronic data to form in real time an image representation of a subject (52) within the examination region (14). The increased data collection rate and data processing rates allow for real time image updating.
摘要:
A method for shimming main magnetic field in a magnetic resonance imaging apparatus is provided. The method includes generating a radio frequency pulse sequence (200) while a subject is in an examination region (14) of the magnetic resonance imaging apparatus. A reference signal (EC1) which is immune to shim errors is then acquired. Thereafter, a field echo (EC3a) signal is acquired which is sensitive to shim errors. The field echo (EC3a) signal is acquired at a timed interval (T) equal to a multiple of an amount of time it takes for fat and water signals to become in phase. The temporal position of the maximum of the field echo signal is compared to its predicted temporal position (EC3) relative to the reference signal (EC1). The shim term is calculated based on the preceding comparison and an electrical current is applied to one of a gradient offset and a shim coil such that the main magnetic field is adjusted according to the shim term.
摘要:
A gamma camera system includes two or more radiation detector heads and which are mounted opposite each other to a gantry for rotation about a subject. A transmission radiation source assembly is mounted to the front face of at least one of the detectors and can be moved across the face of the detector. The source assembly includes a radiation attenuating housing, a leaded bronze source holder, and a radionuclide source. The radionuclide source is retained in a longitudinal groove disposed in the source holder. The source holder may be rotated into open, closed, and access positions. The transmission radiation emitted by the source assembly is directed across the examination region, attenuated by the subject, and detected by the opposed detector. The gamma camera system also includes a filter which selectively attenuates the transmission radiation to obtain a desired attenuation profile which prevents saturation of the opposed detector. The filter includes at least one layer of radiation attenuating material of uniform thickness but varying in width in a direction substantially parallel to a direction of motion of the source assembly. An image representation is reconstructed using the radiation emitted by the subject and corrected in accordance with the transmitted radiation data.
摘要:
An x-ray tube includes an anode, a cathode, and an electrode disposed in an evacuated envelope. The electrode is positioned such that the electrode is remote from an area in immediate proximity to the envelope. An electric field defined by electrode is of sufficient strength such that arcing preferentially occurs between the electrode and the anode as opposed to occurring between the cathode and anode. The electrode is further situated such that metal sputtered from the electrode substantially falls in a define region on the anode and serves as an active getter for pumping gas from the envelope. The electrode is composed of an active metal which, upon being passively heated by the anode, also acts as a getter material to aid in pumping gas from the envelope.
摘要:
Resonance is excited in a first slab (12) and manipulated to generate a plurality of data lines (16, 18) which span a fraction of k-space, e.g. a quarter of the phase encoding steps along a y-direction. Resonance is then excited in a second slab (22) displaced from the first slab and another series of data lines are generated. A resonance is excited and data lines generated in a plurality of additional slabs (32, 42). A resonance is excited in a slab (52) which partially overlaps the slab (12), e.g., has three of four slices in common. A series of data lines in the slab (52) are phase encoded with a different fraction of k-space. Two sets of differently phase encoded data sets have been generated in the example of FIGS. 2a and 2b. This process is cyclically repeated exciting in slabs which partially overlap proceedingly generated slabs, each time generating a different fraction of the data lines until a completed set of data is generated in an extended volume larger than one slab, slices 4-16 in the example of FIGS. 2a and 2b.
摘要:
An x-ray tube is disposed within an x-ray tube housing defining a chamber filled with oil or other cooling medium for cooling the x-ray tube. The x-ray tube includes an envelope enclosing an evacuated chamber in which an anode assembly is rotatably mounted to a bearing assembly and interacts with a cathode assembly for production of x-rays. The bearing assembly includes a bearing housing and a plurality of bearings disposed on a surface of the bearing housing. A heat sink is coupled to the bearing assembly and provides a thermally conductive path between the bearing assembly and the cooling medium in the x-ray tube housing for providing direct cooling of the bearing assembly during operation.
摘要:
A microscope calibrator probe includes a handle, a tool head connected to the handle, a viewable target connected to an end of the tool head opposite the handle, and three or more position signaling devices disposed on the handle for tracking the probe in an image guided surgery system. The tool head includes a bend of approximately 90 degrees to provide easy placement of the viewable target on an object being viewed below a microscope. Other angles for the bend are also acceptable. A precise location of the object being viewed is determined by sensing a location the three or more position signaling devices disposed on the handle with respect to an operating room reference frame and knowing an offset between the position signaling devices and a bottom surface of the viewable target in contact with the object. Additionally, the viewable target includes a viewable aperture for calibrating a line of sight of the microscope and a means for indicating a rotational sense of the viewable target.
摘要:
A tool calibrator includes two portions shaped to slidably engage and secure a tool in a desired position. The tool is secured by a series of staggered V shaped grooves on each of the two portions having a known geometrical relationship with a diameter of a tool head of the tool. The tool calibrator further includes at least one position signaling device for communicating a location of the tool calibrator in an operating room or other area. A position and direction of a tip of the tool is determined by comparing a location of the tool secured within the tool calibrator to the location of each of the two portions. Further, based on the location of each of the two portions, the diameter of the tool head is calculated.