Abstract:
Methods, systems, and articles of manufacture are provided for defining a privacy zone between an asset platform and an offering platform within a network. A request is received from a customer for an offering to be deployed in association with an asset hosted on the asset platform. The offering has back-end offering logic and front-end offering logic that is operatively configured to collect and transfer a data element associated with the asset to the back-end offering logic. A privacy policy associated with the offering is identified. The front-end offering logic is deployed to the asset platform such that the front-end offering logic is operatively configured to communicate with the asset. A data element collection filter is then generated between the front-end offering logic and the back-end offering logic to control the transfer and the access of the data element in accordance with the privacy policy.
Abstract:
A virtual core management system including one or more physical cores, a virtual core including a collection of logical states associated with the execution of a program, and a virtual core management component configured to map the virtual core to one of the one or more physical cores based upon power management considerations.
Abstract:
Disclosed herein are aspects of optical tape technology, tape manufacturing, and tape usage. Methods and systems of tape technology disclose optical tape media including: configurations, formulations, markings, and structure; optical tape manufacturing methods, systems, and apparatus methods and systems including: curing processes, coating methods, embossing, drums, testing, tracking alignment stamper strip; optical tape methods and systems including: pick up head adapted for the disclosed optical tape; and optical tape uses including optical storage media devices for multimedia applications
Abstract:
The present disclosure provides a compiler prespill phase that reduces or eliminates excessive register pressure, or locations in the code of a program where live virtual registers exceeds physical registers of a target computing device, prior to register allocation. The prespill phase identifies points of excessive register pressure, selects candidate virtual registers, chooses virtual registers to prespill from the candidates, and inserts spill and reload instructions to prespill the chosen registers. The prespill phase may reduce the register pressure such that the live virtual registers only exceed the physical registers by a particular number, the live virtual registers equal the physical registers, or the physical registers exceed the live virtual registers by a particular number. The compiler may then perform one or more early and/or late instruction scheduling phases, including global and/or local instruction scheduling, to optimize the placement of the spill and reload instructions.
Abstract:
The described embodiments provide a processor (e.g., processor 102) for executing instructions. During execution, the processor starts by transactionally executing instructions from a protected section of program code. The processor then encounters a transactional failure condition while transactionally executing the instructions from the protected section of program code. In response to encountering the transactional failure condition, the processor enters a transactional-scout mode and speculatively executes subsequent instructions in the transactional-scout mode.
Abstract:
A method and system of merging gated-clock domains in a semiconductor design includes producing, for each subset of clock gating functions in an initial set of clock gating functions, a set of quantified functions produced by existentially quantifying each clock gating function in the subset over a set of variables that are not part of the support sets of the other clock gating functions of the subset. If the set of quantified functions are equal, selecting one as a super clock gating function and adding it to the set of super clock gating functions. The set of super clock gating functions are sorted according to a criterion and the best is selected and added to the set of final clock gating functions. The remaining super clock gating functions are modified to prevent flip-flops gated by the selected super clock gating function from being gated by remaining super clock gating functions.
Abstract:
An LDPC coding system includes a number of LDPC encoders and a number of LDPC decoders. The number of encoders/decoders is between one and one fewer than the total number of tracks on the high density tape are provided. The LDPC encoders are operable to break data from an incoming data sector into the data blocks to be written to the high density tape. The LDPC decoders are operable to assemble the data blocks into data sectors.
Abstract:
Various embodiments herein include one or more of systems, methods, software, and/or data structures to implement a “pluperfect” hash function. Generally, a pluperfect hash function is a hash function that maps distinct elements in a set S to distinct hash values H with no collisions (i.e., perfect hash function) and also includes an additional constraint that the hash function does not map other elements outside the set S into the set of distinct hash values H. In some example embodiments, pluperfect hash functions are used to implement a multi-way branch statement in a computer programming language. The implementation may include generating hash values for each of the case labels of the branch statement according to a pluperfect hash function.
Abstract:
Implementations of the present invention may involve methods and systems to improve the combined power consumption and thermal response of individual components of a computer system as the components are stressed concurrently during simulation or testing of the system. A group of operating system-level instruction sets for several individual components of the computer system may be designed to stress the components and executed concurrently while power and thermal measurements are taken. The instruction sets may utilize one or more software threads of the computer system or hardware threads such that minimal interference between components occurs as the system is tested. Further, the system components may be partitioned between separate instruction sets. By minimizing the interference between the components while the system is operating, a more accurate power consumption and thermal effect measurements may be taken on the computer system to better approximate the performance of the system.
Abstract:
In general, the invention relates to a creating a network model on a host. The invention includes: gathering first component properties associated with a first physical network device on a target network; creating a first container using first component properties; determining that a second physical network device is operatively connected to the first physical network device via a physical network link; gathering second component properties associated with the physical network link; creating a first VNIC associated with the first container; determining that at least one virtual network device is executing on the second physical network device; gathering third component properties associated with the at least one virtual network device; creating a second container, wherein the second container is configured using the third component properties; and creating a second VNIC associated with the second container.