Abstract:
An embodiment provides method for controlling lamp output within an array of lamps, including: receiving sensor data corresponding to one of a plurality of lamps within the array, wherein the sensor data comprises an irradiance value from at least one of: within a lamp sleeve and an irradiance value from outside a lamp sleeve; identifying, based the sensor data, a change in an output of the one of the plurality of lamps; sharing the sensor data with other of the plurality of lamps within the array; and adjusting, in response to the sharing, an output of at least one of the other of the plurality of lamps within the array, thereby compensating for the change in the output of one of the plurality of lamps. Other aspects are described and claimed.
Abstract:
An embodiment provides a method for making a non-hazardous iron product for treating wastewater, including: adding sodium bisulfite to a solution comprising iron, creating an aqueous solution; adding an amount of sodium hydroxide to the aqueous solution to increase the pH of the aqueous solution to between 2-2.5; determining an amount of sodium bicarbonate and adding the identified amount of sodium bicarbonate to the aqueous solution, wherein the sodium bicarbonate adjusts the pH of the aqueous solution to a desired pH; and providing a buffer to the aqueous solution to generate a slurry. Other embodiments are described and claimed.
Abstract:
An embodiment provides a method for cleaning a surface, including: encapsulating a cleaning composition in a polymer material to form a compound, wherein the polymer material surrounds the cleaning composition; placing the compound in a location adjacent to the surface, wherein the location adjacent to the surface is a volume separated from an outer volume; dissolving the polymer material at a pH above a target value above the polymer material pH dissolution point, wherein the dissolving releases the cleaning composition; and cleaning the surface using the released cleaning composition. Other aspects are described and claimed.
Abstract:
An embodiment provides A method for making a non-hazardous iron product for treating wastewater, including: adding sodium bisulfite to a solution comprising iron, creating an aqueous solution; adding an amount of sodium hydroxide to the aqueous solution to increase the pH of the aqueous solution to between 2-2.5; determining an amount of sodium bicarbonate and adding the identified amount of sodium bicarbonate to the aqueous solution, wherein the sodium bicarbonate adjusts the pH of the aqueous solution to a desired pH; and providing a buffer to the aqueous solution to generate a slurry. Other embodiments are described and claimed.
Abstract:
There is described an on-line device for controlling a fluid treatment process configured to inactivate a microorganism in a flow of fluid using ultraviolet radiation and a chemical disinfectant. The device includes: a memory for receiving a calculated database of dose response for the ultraviolet radiation and for the chemical disinfectant for a fluid treatment parameter; means to obtain input data about the fluid treatment parameter from the process; means to compare the input data with calculated database; and means to adjust one or more of the amount ultraviolet radiation and the chemical disinfectant added to the flow fluid in response to a difference between the input data and calculated database. There is also described a process for controlling a fluid treatment process configured to inactivate a microorganism in a flow of fluid using ultraviolet radiation and a chemical disinfectant.
Abstract:
There is described, a fluid treatment system comprising: a fluid treatment chamber comprising a fluid inlet, a fluid outlet and a fluid treatment zone; an elongate radiation source assembly comprising an elongate radiation source configured to be disposed in the fluid treatment zone; and a lamp socket element secured to a proximal portion of the fluid treatment chamber, the lamp socket element configured to be disengaged from the elongate radiation source assembly only when the fluid treatment chamber is fluid non-pressurized.
Abstract:
A lamp device is disclosed. The lamp device comprises a first electrical connector and a second electrical connector located at a first end portion of the lamp device. The first end portion of the lamp device is received in a receptacle of a first base portion. A first locking portion is included for secunng the first base portion to the first end portion. The present radiation lamp device obviates or mitigates the need to use adhesive and/or polymer insulation/O-rings to achieve electrical connections. Further, the present radiation lamp may be oriented in a vertical orientation without the need to use springs and/or rubber part to support the distal end of the lamp.
Abstract:
The P21 protein is used as a medicament in the treatment of cancer. A conjugate comprises a first region comprising the P21 protein, or a homologue or functional fragment thereof; and a second region comprising a translocation factor.
Abstract:
There is described a cleaning system for a radiation source. The cleaning system comprises: (i) a cleaning chamber housing; (ii) a cleaning cartridge removably disposed in the cleaning chamber housing; and (iii) an endcap element removably coupled to the cleaning chamber housing. The cleaning cartridge comprises a first sealing element and a second sealing element, the first sealing element and the second sealing element configured to provide a substantially fluid tight seal with respect to an exterior surface of the radiation source. A radiation source module and a fluid treatment system comprising the radiation source module are also described.
Abstract:
The subject invention pertains to a conjugate comprising: (a) a first region comprising the homeodomain of antennapedia or a variant thereof; and (b) a second region not naturally associated with the first region. In one embodiment, the second region of the conjugate comprises a protein of at least 100 amino acids.