Abstract:
The invention provides an improved method of routing power from a power source such as an AC power source directly to a printed circuit board and then to an appliance that interfaces with one or more appliance claws that are connected directly or indirectly to the circuit board. Various embodiments offer superior durability, manufacturability, and cost-effectiveness. They may also decrease the dimensions, cost, and complexity of a robust assembly.
Abstract:
The present invention is directed to methods and systems for control of loads that are connected to plugs. Through the use of various embodiments of the present invention one may allow a plurality of users to control the use of power by individual loads and dynamically configurable sets of loads with ease, on both small and large scales. Users may select from energy savings plans to generate compiled device power state schedules that automatically cause devices to enter power savings modes as pre-determined times. Consequently, one can efficiently manage plug load electricity usage in a plurality of buildings.
Abstract:
A system and method is provided to enable consumers to intelligently manage their consumption of energy. In one embodiment, waveform data is collected for a plurality of appliances which may be found in a residential or commercial setting using a plurality of multi-port outlet monitoring devices. The collected waveform data is processed and analyzed to obtain power consumption profiles that indicate power consumption on a per-appliance and/or per-outlet basis and/or per user basis.
Abstract:
The present invention is directed to methods and systems for control of loads that are connected to plugs. Through the use of various embodiments of the present invention one may allow a plurality of users to control the use of power by individual loads and dynamically configurable sets of loads with ease, on both small and large scales. Users may select from energy savings plans to generate compiled device power state schedules that automatically cause devices to enter power savings modes as pre-determined times. Consequently, one can efficiently manage plug load electricity usage in a plurality of buildings.
Abstract:
Systems and methods are provided for collecting waveform data for a plurality of appliances that may be found in a residential or commercial setting using multi-port outlet monitoring devices to obtain power consumption profiles that indicate power consumption on a per-appliance and/or per-location basis and/or per user basis. The plurality of appliances is reliably identified from the power consumption profiles. In accordance with a method embodiment, waveform data transmitted from an unknown appliance is independently metered via a multi-port monitoring device over an elapsed time period. The metered waveform data is wirelessly transmitted from the multi-port monitoring device to a co-located system controller which constructs an appliance signature. The process may be repeated to generate multiple appliance signatures. The one or more appliance signatures are compared to a database of pre-stored canonical signatures to determine if there is a match to identify the appliance.