摘要:
An electric toothbrush (10) and method of operating an electric toothbrush. The electric toothbrush includes a handle portion (14) having a shaft (38) configured to receive a brushing load from a bristled end (18) of a brush head (12). A sensor assembly (30) is configured to determine a deflection proportional to the brushing load with respect to a first direction (24) associated with the brushing load. The sensor assembly includes an air gap (32) and is configured to determine the deflection based on changes in the air gap. A mounting bracket (50) is connected between opposite sides of the air gap, the mounting bracket having a first bending stiffness with respect to the first direction, and a second bending stiffness with respect to a second direction (28) generally opposite to the first direction. The first bending stiffness is greater than the second bending stiffness.
摘要:
Systems and methods for enhancing a user's efficiency while operating an oral hygiene device (10) is provided. In an exemplary embodiment, motion information of an oral hygiene device is received from one or more accelerometers (32) located within the oral hygiene device. The received motion information is compared to a targeted motion of the oral hygiene device. The user operating the oral hygiene device is then provided with feedback in response to determining that the received motion information is within a predefined range of the targeted motion information.
摘要:
An electric toothbrush includes a brush head at an end of a handle, an acceleration sensor and/or a rotation sensor that detect(s) movement parameters of the electric toothbrush, a wireless communication interface that wirelessly transmits recorded data comprising the detected movements parameters of the electric toothbrush in a processed state and receives treatment mode data for operating the electric toothbrush, a pressure sensor that detects a contact pressure applied by the brush head to teeth and/or gums, at least one first outputting device that visually outputs signals or commands in accordance with the detected contact pressure or in accordance with the detected movement parameters, and at least one second outputting device that haptically outputs signals or commands, in the form of vibrations, in accordance with the detected contact pressure or in accordance with the detected movement parameters.
摘要:
A rotatable brush for animals is provided, having a longitudinal length and including a rotatable core portion with a plurality of bristles each having a first end connected to the core portion and a second free end located in a position radially outwardly of the first end with respect to a rotation axis of the brush. The brush includes at least one protective element rotationally fixedly connected to the core portion. The least one protective element is flexible and extends radially outwardly from the core portion. The protective element forms an outer hair guiding surface portion along the longitudinal length of the brush.
摘要:
In one embodiment, the invention can be an oral care system that includes a toothbrush; a user interface configured to receive a brushing goal from a user; and a programmable processor operably coupled to the user interface. The programmable processor can be configured to receive brushing goal data indicative of the brushing goal received by the user interface; and determine, based at least in part on the brushing goal data, at least one of a suggested brushing routine and a brushing evaluation for a brushing session.
摘要:
An oral care system may include: an oral care device including: at least one teeth cleaning element; and at least one sensor configured to detect a brushing intensity during a brushing routine of a user and to generate sensor data corresponding to the detected brushing intensity; and a programmable processor configured to: receive the sensor data generated by the at least one sensor; and determine a target brushing time based on the sensor data.
摘要:
An oral hygiene implement is described herein. The oral hygiene implement has a handle; a head, and a neck disposed between the handle and the head. The head has a plurality of contact elements. An indication element is positioned between the neck and handle of the oral hygiene element. A transmission element is positioned between the indication element and a light emitting source. The light emitting source provides electromagnetic energy to the transmission element.
摘要:
A personal hygiene device has a handle, a treatment head mounted for relative movement of at least a portion thereof with respect to the handle against a restoring force when a treatment force is applied in at least one direction onto the treatment head, a treatment-force-measurement unit for determining the applied treatment force comprising a light-emitting element, a light-sensitive element, and a light-changing element arranged at least partly in the light path between the light-emitting element and the light-sensitive element, wherein the light-changing element and at least one of the light-emitting element and light-sensitive element are arranged to be moved relatively to each other when at least the portion of the treatment head is moved.
摘要:
A stress control brush includes a brush head, an elastic plate and a handle. The brush head includes a bristle seat and a first limit part. The handle includes a holder and a second limit part. The elastic plate connects the brush head and the handle. The elastic plate with curved structure has an unbending type and a collapsed bending type. The first limit part and the second limit part are pressed against each other so as to restrict the bending curvature of the elastic plate.
摘要:
The power toothbrush includes a brushhead arm (36) and a brush element (38) at a distal end thereof. A V-spring assembly (14) converts the movement of a power drive assembly in a back-and-forth movement. A mounting member (55) at the rear end of the V-spring assembly provides a base for a magnet (56). The back end of the V-spring assembly is displaced in accordance with pressure applied to the brush member. A Hall effect sensor (58) is mounted within the changing magnetic field produced by the magnet as the rear end of the V-spring assembly is displaced due to pressure on the brushhead. A processor (65) is responsive to the output from the Hall sensor and provides an indication when the pressure exceeds a threshold value.