摘要:
A focusing microprobe system, comprising: one of a single-mode laser radiation source and a few-mode laser radiation source; a coupler coupled to the laser radiation source; one of a single-mode flexible laser radiation delivery system and a few-mode flexible laser radiation delivery system coupled to the coupler; and one or more focusing microlenses coupled to the flexible laser radiation delivery system and arranged in a focusing tip. The coupler comprises a focusing lens. The flexible laser radiation delivery system comprises one of a hollow-core fiber and a flexible waveguide. Optionally, the one or more focusing microlenses are bonded to seal a hollow internal cavity of the flexible laser radiation delivery system. The one or more focusing microlenses comprise one or more conventional lenses or one or more focusing spheres, hemispheres, or cylinders.
摘要:
A laser device includes first and second laser transmitting passages. The first laser transmitting passage in the form of tube has an interior opened at its first and second ends. The second laser transmitting passage has first and second ends. The first end of the second laser transmitting passage is spaced away from but optically connected with the second end of the first laser transmitting passage. This allows that laser transmitted through the first laser transmitting passage is guided into the second laser transmitting passage. Air, on the other hand, is transmitted through the first laser transmitting passage to impinge on the first end of the second laser transmitting passage for cooling.
摘要:
The system and method of delivery of laser radiation comprises a flexible hollow waveguide connectable at a first end to a low power laser source, such as a CO.sub.2 laser, a rigid hollow waveguide having a proximal end and a distal end, a coupler for coupling the second end of the flexible hollow waveguide to the proximal end of the rigid hollow waveguide and a diamond tip partially disposed within and extending from the distal end of the rigid waveguide. The diamond tip has an entrance face for receiving laser radiation and at least one exit face for transmitting laser radiation toward an area of biological tissue. The exit end of the diamond tip may be flat, parallel to the entrance face, curved, to act as a lens providing a focusing function, or beveled, to create one or more blade edges to limit the point(s) of exit of the laser radiation and to provide a cutting edge which may be used in combination with the radiation to simultaneously create and photocoagulate the tissue at an incision.
摘要:
Plane-polarized laser-radiation from a laser-source is converted to circularly polarized radiation by a quarter-wave plate. The circularly polarized radiation is input into a hollow-core fiber for transport to a point of use. The transported radiation is converted back to plane-polarized radiation by another quarter-wave plate between the fiber and the point of use.
摘要:
A focusing microprobe system, comprising: one of a single-mode laser radiation source and a few-mode laser radiation source; a coupler coupled to the laser radiation source; one of a single-mode flexible laser radiation delivery system and a few-mode flexible laser radiation delivery system coupled to the coupler; and one or more focusing microlenses coupled to the flexible laser radiation delivery system and arranged in a focusing tip. The coupler comprises a focusing lens. The flexible laser radiation delivery system comprises one of a hollow-core fiber and a flexible waveguide. Optionally, the one or more focusing microlenses are bonded to seal a hollow internal cavity of the flexible laser radiation delivery system. The one or more focusing microlenses comprise one or more conventional lenses or one or more focusing spheres, hemispheres, or cylinders.
摘要:
The present invention provides an optical microprobe device and method for focusing multimodal radiation with wavelength-scale spatial resolution and delivering the focused radiation to a specimen, including: a radiation source; and one or more of a plurality of optically transparent or semitransparent spheres and a plurality of optically transparent or semitransparent cylinders optically coupled to the radiation source; wherein the one or more of the plurality of optically transparent or semitransparent spheres and the plurality of optically transparent or semitransparent cylinders periodically focus radiation optically transmitted from the radiation source such that radiation ultimately transmitted to the specimen has predetermined characteristics. Preferably, the spheres or cylinders are assembled inside one of a hollow waveguide, a hollow-core photonic crystal fiber, a capillary tube, and integrated in a multimode fiber. Alternatively, the spheres or cylinders are assembled on a substrate. Optionally, the optical microprobe device also includes one or more of a waveguide, an optical fiber, a lens, and an optical structure disposed between the radiation source and the spheres or cylinders. Optionally, the spheres or cylinders are made from optically nonlinear or active materials that permit efficient nonlinear frequency generation and low-threshold lasing using the optical microprobe device.
摘要:
The present invention provides a method for treatment of hard tissues, such as stones, present in very small a fluid-filled body cavity, such as ducts of the salivary glands, by applying to said hard tissue, or to the proximity of said hard tissue, a laser beam produced by an Er:YAG laser device. The invention further concerns a system for use in this method, and an add-on aperture for converting a standard Er:YAG device used in dentistry to a device suitable for the method of the present invention.
摘要:
An apparatus includes a light source configured to provide radiation at a wavelength and a conduit configured to direct radiation at a wavelength from the light source to a target location of a patient. The conduit includes a first optical waveguide extending along a waveguide axis, the first optical waveguide being a flexible waveguide having a hollow core, the first optical waveguide being configured to guide the radiation at through the core along the waveguide axis; and a second optical waveguide extending along the waveguide axis, the second optical waveguide having a hollow core and being coupled to the first optical waveguide to receive the radiation from the first optical waveguide and to deliver the radiation to the target location. The first optical waveguide is a photonic crystal fiber and the second optical waveguide is not a photonic crystal fiber waveguide.
摘要:
A Minimally Invasive Surgical Laser Hand-piece (“MISLH”) for use with a probe is described. The MISLH has a MISLH proximal end and MISLH distal end, and the MISLH may include an optical coupler located at the MISLH proximal end, a substantially straight central bore within the MISLH, and an internal beam stop aperture within the central bore adjoined to the optical coupler. The central bore may extend from the optical coupler to the MISLH distal end and the central bore may be configured to accept the insertion of the probe within the central bore at the MISLH distal end. Additionally, the central bore may be configured to accept the insertion of the probe such that the probe is adjoined to the internal beam stop aperture.
摘要:
An apparatus includes a light source configured to provide radiation at a wavelength and a conduit configured to direct radiation at a wavelength from the light source to a target location of a patient. The conduit includes a first optical waveguide extending along a waveguide axis, the first optical waveguide being a flexible waveguide having a hollow core, the first optical waveguide being configured to guide the radiation at through the core along the waveguide axis; and a second optical waveguide extending along the waveguide axis, the second optical waveguide having a hollow core and being coupled to the first optical waveguide to receive the radiation from the first optical waveguide and to deliver the radiation to the target location. The first optical waveguide is a photonic crystal fiber and the second optical waveguide is not a photonic crystal fiber waveguide.