Abstract:
Laser annealing apparatus includes a plurality of frequency-tripled solid-state lasers, each delivering an output beam of radiation at a wavelength between 340 nm and 360 nm. Each output beam has a beam-quality factor (M2) greater of than 50 in one transverse axis and greater than 20 in another transverse axis. The output beams are combined and formed into a line-beam that is projected on a substrate being annealed. Each output beam contributes to the length of the line-beam.
Abstract:
Plane-polarized laser-radiation from a laser-source is converted to circularly polarized radiation by a quarter-wave plate. The circularly polarized radiation is input into a hollow-core fiber for transport to a point of use. The transported radiation is converted back to plane-polarized radiation by another quarter-wave plate between the fiber and the point of use.
Abstract:
A laser includes a Ti:sapphire gain-medium in the form of a thin-disk. The thin-disk gain-medium is optically pumped by pump-radiation pulses having a wavelength in the green region of the electromagnetic spectrum. The pump-radiation pulses have a duration less than twice the excited-state lifetime of the gain-medium.
Abstract:
An optical amplifier for use as a final amplification stage for a fiber-MOPA has a gain-element including a thin wafer or chip of ytterbium-doped YAG. An elongated gain-region is formed in gain-element by multiple incidences of radiation from a diode-laser bar.
Abstract:
A fiber laser producing a beam of ultrashort laser pulses at a repetition rate greater than 200 MHz includes a linear fiber resonator and a fiber branch. Ultrashort laser pulses are generated by passive mode-locking and circulate within the linear fiber resonator. Each circulating laser pulse is split into a portion that continues propagating in the linear fiber resonator and a complementary portion that propagates through the fiber branch and is then returned to the linear fiber resonator. The optical length of the linear fiber resonator is an integer multiple of the optical length of the fiber branch. The repetition rate of the ultrashort laser pulses is the reciprocal of the propagation time of the laser pulses through the fiber branch.
Abstract:
Laser-apparatus includes a fiber-MOPA arranged to deliver amplified seed optical pulses having a wavelength of about 1043 nanometers to a multi-pass ytterbium-doped yttrium aluminum garnet solid-state optical amplifier for further amplification.
Abstract:
A source of femtosecond pulses at center wavelengths of about 940 nm and about 1140 nanometers (nm) includes a mode-locked fiber MOPA delivering pulses having a center wavelength of about 1040 nm. The 1040-nanometer pulses are spectrally spread into a continuum spectrum extending in range between about 900 nm and about 1200 nm and having well defined side-lobes around the 940-nm and 1140-wavelengths. Radiation is spatially selected from these side-lobes and delivered as the 940-nm and 1140-nm pulses.
Abstract:
A mode-locked fiber MOPA delivers pulses of laser-radiation. A super-continuum generator including a bulk spectral-broadening element and a negative group-delay dispersion (NGDD) device is arranged to receive a pulse from the MOPA and cause the pulse to make a predetermined number of sequential interactions with the broadening element and the NGDD device. After making the predetermined interactions, the pulse is delivered from the super-continuum generator with a very broad spectral-bandwidth and a very short duration.
Abstract:
A mode-locked fiber MOPA delivers pulses of laser-radiation. A super-continuum generator including a bulk spectral-broadening element and a negative group-delay dispersion (NGDD) device is arranged to receive a pulse from the MOPA and cause the pulse to make a predetermined number of sequential interactions with the broadening element and the NGDD device. After making the predetermined interactions, the pulse is delivered from the super-continuum generator with a very broad spectral-bandwidth and a very short duration.