Abstract:
A method for increasing the ZT of a semiconductor, involves creating a reaction cell including a semiconductor in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the ZT of the semiconductor, and recovering the semiconductor with an increased ZT.
Abstract:
A method for increasing the ZT of a semiconductor, involves creating a reaction cell including a semiconductor in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the ZT of the semiconductor, and recovering the semiconductor with an increased ZT.
Abstract:
An apparatus to decompose a hydrocarbon reactant into a gaseous product and a solid product includes a reactor volume, a reservoir of liquid material, a plurality of nozzles connected to the reservoir of liquid material, the plurality of nozzles configured to distribute the liquid material into the reactor volume from the reservoir as a liquid mist, a gas inlet connected to a hydrocarbon gas source to receive hydrocarbon gas reactant, a distributor connected to the inlet to distribute the hydrocarbon gas reactant into the reactor volume, a heat source located adjacent the reactor volume configured to heat the reactor volume, a separator to separate the solid product from the liquid material, a re-circulation path connected between the reactor volume and the reservoir to re-circulate the liquid material from the reactor volume to the reservoir, a gas outlet connected to the reactor volume configured to outlet hydrogen gas from the reactor volume, and at least one filter connected to the gas outlet to remove entrained solid product from the hydrogen gas.
Abstract:
Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
Abstract:
A method to decompose a hydrocarbon reactant into a gaseous product and a solid product includes generating a mist of a liquid material within a reactor volume, heating the reactor volume, introducing a hydrocarbon reactant into the reactor volume to produce a solid product and a gaseous product, separating the solid product from the liquid material, removing the solid product and gaseous product from the reactor volume, and recirculating the liquid material be re-introduced to the reactor volume.
Abstract:
Disclosed is provided a method of injecting and reacting super-critical phase CO2 without pressure loss. The method includes preparing gas phase CO2, producing liquid phase CO2 by pressurizing the prepared gas phase CO2, producing super-critical phase CO2 by adjusting a temperature of the produced liquid phase CO2, filling incompressible fluid in a reactor and an injection line from an injection unit and pressurizing the incompressible fluid, injecting the produced super-critical phase CO2 into the reactor, and controlling a pressure of the injected super-critical phase CO2 by a pressure regulating unit.
Abstract:
Disclosed is provided a method of injecting and reacting super-critical phase CO2 without pressure loss. The method includes preparing gas phase CO2, producing liquid phase CO2 by pressurizing the prepared gas phase CO2, producing super-critical phase CO2 by adjusting a temperature of the produced liquid phase CO2, filling incompressible fluid in a reactor and an injection line from an injection unit and pressurizing the incompressible fluid, injecting the produced super-critical phase CO2 into the reactor, and controlling a pressure of the injected super-critical phase CO2 by a pressure regulating unit.