Abstract:
A paint delivery and application apparatus, wherein the apparatus includes a source of paint, a paint applicator, a supply line interconnecting the source of paint and the applicator and at least one pig in the supply line, wherein the paint pushes the pig from adjacent the source of paint to the paint applicator and a source of purging solvent delivering a small volume of purging solvent to the supply line when the pig is adjacent the source of paint adjacent to and upstream of the pig acting as a lubricant, reducing chattering and skipping of the pig and extending the life of the pig. Where the apparatus includes two pigs, purging solvent is delivered between the pigs adjacent the applicator, the pigs are delivered to adjacent the source of paint and a small volume of solvent is then delivered from between the pigs upstream of the pigs.
Abstract:
The invention concerns an electric separation unit (28) for a liquid supply pipe (12), in particular for a supply pipe used for paint. Said unit comprises a housing (30) having a chamber (34), wherein a discharge sheath (44) is arranged. The latter forms part of a fluid channel, which extends from the inlet (52) to the outlet (54) of the housing (30). The liquid contained in the sheath can be discharged by pressurizing the outer part of the discharge sheath (44) and compressing said sheath, an isolating passageway not containing any liquid passage being thus obtained.
Abstract:
An intermediate reserve tank for temporarily storing a conductive coating medium is provided in a coating medium supply passage for supplying the conductive coating medium from a color switch valve mechanism to a spray gun. A block valve mechanism for electrically insulating the color switch valve mechanism and the intermediate reserve tank is provided. A coating medium extrusion portion for supplying water or a cleaning solution is connected to a transmission passage between the intermediate reserve tank and the spray gun via a switch valve.When an amount of the coating medium necessary until an end of a coating operation becomes a predetermined amount, the conductive coating medium is extruded by the water or the cleaning solution by switching the switch valve.
Abstract:
A paint delivery and application apparatus, wherein the apparatus includes a source of paint, a paint applicator, a supply line interconnecting the source of paint and the applicator and at least one pig in the supply line, wherein the paint pushes the pig from adjacent the source of paint to the paint applicator and a source of purging solvent delivering a small volume of purging solvent to the supply line when the pig is adjacent the source of paint adjacent to and upstream of the pig acting as a lubricant, reducing chattering and skipping of the pig and extending the life of the pig. Where the apparatus includes two pigs, purging solvent is delivered between the pigs adjacent the applicator, the pigs are delivered to adjacent the source of paint and a small volume of solvent is then delivered from between the pigs upstream of the pigs.
Abstract:
A voltage block device, for preventing the negative electric potential from transferred to the coating material source, has a switching device including a slider which is selectively slidable between first and second positions and has an inlet port fluidly communicated with the coating material source and an outlet port fluidly communicated with the spray, a reservoir including first and second chambers, the inlet and outlet ports are fluidly communicated with the first and second chambers, respectively when the slider is at the first position, and the inlet and outlet ports are fluidly communicated with the second and first chambers, respectively when the slider is at the second position.
Abstract:
A method and a configuration are provided for transporting electrically conductive paint from a point at earth potential to at least one paint application device which is at a high voltage potential. A needed quantity of paint is filled into a cartridge at a point at earth potential. The filled cartridge is conveyed by a first conveying device to a second conveying device. The cartridges are then allocated to workpieces to be painted. The filled cartridge is transported by the second conveying device to the at least one paint application device. At the paint application device, the cartridge is connected to at least one spray head. The emptied cartridge is transported by the second conveying device to a third conveying device, and the third conveying device transports the cartridge back to the loading station, while a further cartridge is filled there and conveyed by the first conveying device.
Abstract:
A method and a configuration are provided for transporting electrically conductive paint from a point at earth potential to at least one paint application device which is at a high voltage potential. A needed quantity of paint is filled into a cartridge at a point at earth potential. The filled cartridge is conveyed by a first conveying device to a second conveying device. The cartridges are then allocated to workpieces to be painted. The filled cartridge is transported by the second conveying device to the at least one paint application device. At the paint application device, the cartridge is connected to at least one spray head. The emptied cartridge is transported by the second conveying device to a third conveying device, and the third conveying device transports the cartridge back to the loading station, while a further cartridge is filled there and conveyed by the first conveying device.
Abstract:
An apparatus is provided for transferring electrically conductive coating materials, such as water-based paint, from a source to at least one coating dispenser such as a spray gun for discharge onto a substrate. In alternative embodiments, the coating material is supplied to the dispenser(s) from parallel flow paths which are comparatively simple and inexpensive in construction, and which are capable of delivering high pressure, high volume flows of coating material while substantially eliminating pressure fluctuations in the coating material supply when switching from one flow path to another.
Abstract:
A paint color change system and method for sequentially supplying different color electrically conductive paints to an electrostatic applicator. Paint is supplied through a supply hose to a first isolated reservoir and the supply hose is purged and dried to form a voltage block. While paint is supplied through a first delivery hose from the first reservoir to an applicator, a second reservoir is cleaned, paint is supplied to the second reservoir through a supply hose, and the supply hose is purged of paint and dried to form a voltage block. Upon completion of coating with the first color paint, the first delivery hose is purged of paint and dried to form a voltage block and paint then is supplied from the second reservoir through a second delivery hose to the coating applicator. If the same color paint is applied from both reservoirs, the first delivery hose can be cleaned and dried after paint delivery from the second reservoir has started to permit continuous coating.
Abstract:
A sprayer installation suitable for spraying water-based paint includes a multi-axis robot carrying a sprayer. A conveyor carries objects to be sprayed past the robot. Respective circuits for distributing products to be sprayed comprise first connection devices at fixed locations within range of the robot. The robot carries a storage tank for the product to be sprayed at least during a spraying phase. This storage tank is connected to the sprayer to supply product to be sprayed to it. First complementary connection devices fitted to or communicating with the storage tank cooperate with the first connection devices of any selected distribution circuit.