Abstract:
An apparatus for improving the quality of tube bending; adapted to be used in bending machines and comprises a substantially longitudinally extended mandrel, adapted to be inserted into a tube to be bent and having a rigid portion and a flexible portion arranged in series, the latter comprising a series of mandrel segments connected by articulated joints; the apparatus also comprises at least one motion-sensitive sensor, which is integral with at least one of the mandrel segments, and elements for processing the motion information acquired by the sensor.
Abstract:
A pipe bend die unit comprises a clamp member having a first groove part of half-circular cross section on an outer peripheral surface thereof with a fitting recess extending in a peripheral direction by a first predetermined length on a planar surface perpendicular to a rotary axis, and a counter pressure member having a second groove part of half-circular cross section formed on an outer peripheral surface thereof, and a fitting protrusion extending in a peripheral direction by a second predetermined length from a tip end portion of the second groove part. The fitting protrusion is positioned in the fitting recess so that the first and second groove parts are combined to form a pipe-receiving groove of half-circular cross section. The counter pressure member and the clamp member are hingedly connected to one another so as to be rotatable relative to each other about the rotary axis.
Abstract:
A split link (800C) includes a first half link (801), a second half link (803) and a threaded aperture (805) formed in both the first half link (801) and second half link (803) for use in joining the first half link and second half link with a fastening device (807) to form a split link assembly. The split link assembly is machined to include a head portion (811), shoulder portion (813), barrel portion (815) and base portion (817) for use in providing a highly flexible tube bending mandrel.
Abstract:
The various embodiments herein provide a mandrel assembly for tube bending. The mandrel assembly comprises a plurality of chains, a ring arranged between the plurality of chains links, a plurality of ball segments, a shank and a pin. The ring is placed between the set of chain links and the chain links are inserted into the one side of the ball segment and the other side of the ball segment is inserted with other set of chain links and the pin is held to hold the components firmly. The plurality of chains links are passed into a machined section of each of the plurality of ball segments and the pin is inserted into a groove of the ball segments to hold the plurality of chains and then connected to the shank thereby forming a mandrel joint.
Abstract:
A high-strength beam includes first and second sections bent in opposite directions as part of a roll-forming process. A frame includes side frame members incorporating the double-bent beam and at least one energy management tube attached to the beam. In one form, the beam is tubular and has a cross-sectional dimension of greater than 25 mm and a material strength of at least about 60 KSI tensile strength. A roll form apparatus includes a roll former device and a sweep station in-line with the roll former device for sweeping the continuous beam in first and second opposing directions. Also, a method of roll-forming comprises steps of: roll-forming a sheet of material into a continuous beam and sweeping first and second sections of the beam in opposite directions.
Abstract:
A pipe bending machine has a beam mounted in see-saw pivotal relation on a fulcrum and spaced apart cradles support the pipe. An actuator initially drives the second cradle and the beam apart to pivot the pipe about the first cradle until the pipe is in contact with the die and thereafter drives the beam away from the second cradle to bend the pipe against the die. The mechanical advantage of the levered operation requires only a single actuator motion to bend the pipe. An external mandrel allows the pipe to be incrementally fed through the bending machine and secures the pipe against cross-sectional distortion during the bending process.
Abstract:
A high-strength beam includes first and second sections bent in opposite directions as part of a roll-forming process. A frame includes side frame members incorporating the double-bent beam and at least one energy management tube attached to the beam. In one form, the beam is tubular and has a cross-sectional dimension of greater than 25 mm and a material strength of at least about 60 KSI tensile strength. A roll form apparatus includes a roll former device and a sweep station in-line with the roll former device for sweeping the continuous beam in first and second opposing directions. Also, a method of roll-forming comprises steps of: roll-forming a sheet of material into a continuous beam and sweeping first and second sections of the beam in opposite directions.
Abstract:
A mandrel assembly is provided for insertion into a hollow tube to support the interior walls of the tube during bending of the tube in a tube bending apparatus. The mandrel assembly includes at least one mandrel segment that is adapted for positioning within the tube and has an exterior support surface for supporting the interior walls of the tube during bending. The mandrel segment is anchored at a fixed axial location within the tube by an anchoring device that is radially expandable and retractable between an expanded condition in which an anchor shoe is engaged with the interior wall of the tube and a retracted condition in which the anchor shoe is loose within the tube. A mandrel support rod is attached to the anchoring device for inserting and withdrawing the anchoring device into the tube when the anchor shoe is retracted.
Abstract:
A pipe-bending machine mandrel includes a rigid member (5), inserted inside a pipe (T) which has an internal dimension Di and can tilt in a bending operation with a mean radius Rm as measured between the rotation center (O) of a bending die and the longitudinal axis (l) of the pipe (T). The rigid member (5) has a proximal side profile with respect to the rotation center (O) and includes a concave intermediate portion as generated by a radius Rci, and a distal side profile with respect to the rotation center (O) that includes two convex, divided, end portions as generated by respective radius Rce, where Rci=Rm−(Di/2)+t, and Rce=Rm+(Di/2)−t, t being a term varying according to the accuracy of the dimensional characteristics of the pipe and of the curve to be obtained.
Abstract:
A mandrel for bending which inhibits generation of irregularities on the inside of the bend is provided. The mandrel comprises a plurality of plugs in the form of discs and a through-hole is created substantially in the center of each plug. A flexible member is inserted through the through-holes of the respective plugs. One end of the flexible member is fixed to a shank so that the plugs are connected to the shank in series. Each plug is provided with a flat slant surface that descends from about the center of the plug toward the outer periphery of the plug. A lock hole is formed in parallel to the through hole in each plug and a flexible lock member, one end of which is fixed to the shank, is passed through the lock holes of the respective plugs.