Abstract:
A bender configured to bend a workpiece in a bending operation and its method of use are provided. The bender includes a frame, a bending shoe assembly rotatably mounted on the frame, a control system and a driver in communication therewith, and a springback assembly in communication with the control system and configured to provide information to the control system regarding information on a bend affected to the workpiece. The bending shoe assembly includes a bending shoe into which the workpiece can be seated, and a gripping member mounted on the bending shoe and configured to grip the workpiece during the bending operation. The driver provides rotational force to the bending shoe assembly to rotate the bending shoe assembly relative to the frame.
Abstract:
A pipe bend die unit includes a bend die that comprises a clamp member and a counter pressure member, wherein the clamp member has a first groove part of half-circular cross section and a fitting recess extending in a peripheral direction by a first predetermined length on a planar surface perpendicular to a rotary axis. A fitting protrusion of the counter pressure member is positioned in the fitting recess to form a pipe-receiving groove of half-circular cross section, so that the counter pressure member and the clamp member are hingedly connected to one another about the rotary axis so as to be rotated relative to each other. The fitting recess possesses width expanding end face areas, where a clearance between opposing end faces is enlarged in a predetermined distance range including at least a radially outer end portion, from the rotary axis toward a radial outside.
Abstract:
A tube bender is provided. The rotatable member is pivoted to a pivot portion of a base and defines an inner space, and the rotatable member has a gear portion, a first arched groove and a holding portion. The gear portion archedly extends around the pivot portion. The first arched groove archedly extends around the pivot portion on an outer circumferential surface of the rotatable member, and the holding portion has a holding recess. The abutting assembly includes an abutting chunk assembled to the base and an arm member connected with the abutting chunk. A gear assembly includes a driving portion pivoted to the arm member and a gear connected and synchronously-movable with the driving portion. The gear engaged with the gear portion in the inner space.
Abstract:
The present invention provides a pressing device for bending, in which a pipe is held between a bending die having a shape corresponding to a shape of bending and a clamping die revolvable around the bending die, and, when the pipe is bent by revolving the clamping die around the bending die, an axial compression force is applied to the pipe. The pressing device for bending includes a movable table arranged movable in an axial direction of the pipe, a first cylinder provided to the movable table and able to press a rear end of the pipe, and a second cylinder provided to the movable table and able to press a fixed side in a direction opposite to a direction in which the first cylinder presses the pipe.
Abstract:
A bending apparatus for a long material comprises: supporting device for supporting a long material in cantilever fashion at least in a bending direction; bending device which nips the material at an input point apart from the supporting device and is rotated by a predetermined angle so as to bend the material between the supporting device and the input point; driving device for rotating the bending device; feeding device for moving the material toward the bending device and setting a position of the material; and moving device which sets up a separation distance between the supporting device and the bending device prior to bending of the material and allows the supporting device and the bending device to move relatively during the bending of the material.
Abstract:
Si material, which has been considered to be very brittle, and hard to bend, is heated to at least its brittle-ductile transition temperature. A bending moment is applied to a heated portion of the Si material so that a slip deformation is generated. Whereby it is possible to perform bending, and to greatly improve a degree of freedom for machining the Si material. The Si material has a brittle-ductile transition temperature which transfers from a brittle to a ductile state at its brittle-ductile transition temperature. At the transition temperature or more, the Si material is in a state that a slip can to be generated between its crystals in response to a bending torque applied thereto. Thus, when a bending moment is applied to the heated portion of the Si material which is heated to the transition temperature or more, a slip is generated between lattices or between crystal grains in the heated portion, so that the Si material is deformed.
Abstract:
A tube-bending machine is provided for forming a tubular work piece having an inner surface. The tube-bending machine comprises a die assembly for forming the tubular work piece to assume a bent shape, actuator systems configured to move the tubular work piece to predetermined positions relative to the die assembly, a mandrel assembly including a mandrel rod having a first end and a second end spaced apart from the first end and a plurality of mandrel balls attached to the second end of the mandrel rod, and a gripping device for gripping the inner surface of the tubular work piece during advancement of the tube towards the die assembly. The first end of the mandrel rod is attached to the actuator. The gripping device is coupled to the actuator system and formed to include a mandrel rod-receiving aperture. The mandrel rod is positioned to lie in the mandrel rod-receiving aperture.
Abstract:
A telescoping die for use in place of a conventional fixed die in a multi-axis tube bender. The telescoping die provides a means of automatically varying the distance to the moveable die thereby increasing the range of possible bend radii that can be formed while maintaining a close positioning between the feed mechanism and the telescoping die.
Abstract:
The disclosure relates to a method of bending elongated materials such as pipe by applying a compressive primary bending force to the material at locations on either end of the portion of the material to be bent and locally stimulating bending of that portion of the material by the application of heat or a secondary bending force. The end portions of the materials are engaged by clamps, each clamp having an arm extending normal to the principle axis of the material. The compressive primary bend force is applied by exerting a force on locations on the arms displaced from the principal axis of the material, which force tends to draw the ends of the arms together.