Abstract:
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Abstract:
A key identification system that includes a key identification system housing, a key clamp, a key ring support tray, and two digital identifiers is disclosed. The key identification system housing may include a key receiving aperture extending through housing and sized to receive at least some of a key blade of a key. The key clamp is positioned adjacent to the key receiving aperture and allows the system to maintain the key blade in a fixed position within the key identification system housing when the key is inserted into the key receiving aperture. The key ring support tray is typically coupled to the key identification system housing below the key receiving aperture. The two digital identifiers are positioned within the key identification system housing and designed to capture key blade information.
Abstract:
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Abstract:
A fabrication system is disclosed for use in a key making machine. The fabrication system may have a housing with a slot configured to receive a key blank, and a receiving unit configured to accept a shank of the key blank at the slot. The receiving unit may be configured to mechanically align the shank as it is inserted by a user. The fabrication system may also have a clamp movable between an open position and a closed position, and an actuator. The actuator may be configured to move the receiving unit and the key blank to the clamp, and to move the receiving unit away from the key blank after the clamp has moved to the closed position.
Abstract:
A fabrication system is disclosed for use in a key making machine. The fabrication system may have a housing with a slot configured to receive a key blank, and a receiving unit configured to accept a shank of the key blank at the slot. The receiving unit may be configured to mechanically align the shank as it is inserted by a user. The fabrication system may also have a clamp movable between an open position and a closed position, and an actuator. The actuator may be configured to move the receiving unit and the key blank to the clamp, and to move the receiving unit away from the key blank after the clamp has moved to the closed position.
Abstract:
A fabrication system is disclosed for use in a key making machine. The fabrication system may have a housing with a slot configured to receive a key blank, and a receiving unit configured to accept a shank of the key blank at the slot. The receiving unit may be configured to mechanically align the shank as it is inserted by a user. The fabrication system may also have a clamp movable between an open position and a closed position, and an actuator. The actuator may be configured to move the receiving unit and the key blank to the clamp, and to move the receiving unit away from the key blank after the clamp has moved to the closed position.
Abstract:
An integrated key duplication machine includes a machine-based key identification module and a key cutting module. The key identification module is configured to identify a second master key while the key cutting module cuts a key blank corresponding to a first master key. A key blank corresponding to the second master key can be cut on either the integrated machine or a stand-alone machine having only key cutting capabilities.
Abstract:
A method and application provide a universal key code for use when a key is lost. The code can be taken to a locksmith or retailer for duplication. The user can obtain a digital image of their key and a software application can extract unique key geometries from the key, via, for example, edge detection technology and/or other mathematical methods, digital image processing methods and standard image processing methods. A key code can be determined from this extracted information and mapped to a known key code database. The software application can output, from a digital image of an original key, the key blank and key cut code to allow a consumer to simply and conveniently obtain a duplicate key.
Abstract:
A method and application provide a universal key code for use when a key is lost. The code can be taken to a locksmith or retailer for duplication. The user can take a picture of their key and a software application can extract unique key geometries from the key, via, for example, edge detection technology and/or other mathematical methods, digital image processing methods and standard image processing methods. A key code can be determined from this extracted information and mapped to a known key code database. The software application can output, from a picture of an original key, the key blank and key cut code to allow a consumer to simply and conveniently obtain a duplicate key.
Abstract:
A key identification system is provided. The key identification system comprises a sensing device configured to extract bitting information from a master key, and a logic configured to analyze the image. The sensing device may be configured to capture information about the bittings of the master key, such as an image of the bittings. The logic analyzes information about the bittings of the master key and compares it with bitting characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank.