Abstract:
A method of manufacturing a multi-tooth fir-tree or bulbous form milling cutter, by the grinding of a blank with a grinding wheel, wherein, a flat clearance angle Θ of between 0° and 20° is generated on each tooth (13) by the path (14) of the grinding wheel (10), with each tooth (13) having a width (X) from tip to point of maximum clearance (see FIG. 5), calculated as follows: X={[(RtanΘ)cosΘ]cosΘ}±0.25% (being calculation (A)) where R=radius of cutter, and where Θ=clearance angle measured from a tangent to the tooth tip, and furthermore, wherein, each tooth (13) has a variable depth (Y) around the cutter, calculated as follows: Y={[πD]/[180/Θ]} 0.5±0.2. (being calculation (B)) where D=maximum diameter of the form at any given point along the form. The invention also includes fir tree and bulbous milling cutters produced by the above defined method.
Abstract:
A method of manufacturing a multi-tooth fir-tree or bulbous form milling cutter, by the grinding of a blank with a grinding wheel, wherein, a flat clearance angle Θ of between 0° and 20° is generated on each tooth (13) by the path (14) of the grinding wheel (10), with each tooth (13) having a width (X) from tip to point of maximum clearance (see FIG. 5), calculated as follows: —X={[(R tan Θ)cos Θ] cos Θ}±0.25% (being calculation (A)) where R=radius of cutter, and where Θ=clearance angle measured from a tangent to the tooth tip, and furthermore, wherein, each tooth (13) has a variable depth (Y) around the cutter, calculated as follows: —Y={[πD]/[180/Θ]}0.5±0.2. (being calculation (B)) where D=maximum diameter of the form at any given point along the form. The invention also includes fir tree and bulbous milling cutters produced by the above defined method.
Abstract:
A parting/grooving insert and a method of grinding a parting/grooving insert including rotating a plane grinding surface having a normal vector parallel to the axis of rotation and a tangential direction of rotation; providing a parting/grooving insert including a rake surface, a main clearance surface, and a main cutting edge formed between the rake and main clearance surfaces; orienting/positioning the insert relative to the grinding surface, such that the main clearance surface is parallel to the grinding surface, the normal vector of the main cutting edge being in the plane of the main clearance surface and with a vector component in the direction of rotation forming an angle to the tangential direction of rotation at the insert of at least 20 degrees from parallel orientation; and grinding the main clearance surface to provide grinding marks having an angle to the normal vector of the main cutting edge corresponding to the angle to the tangential direction of rotation.
Abstract:
A tool head (46) in which a tool spindle (52), adapted to be equipped with a disc-shaped tool (100), is supported so as to be driven in rotation about a spindle axis (C), is associated with a workpiece support (82) on which a workpiece (10) can be arranged such that the tooth tip (18) of a cutting tooth (12) to be machined will lie on a stationary reference axis (A). The tool head (46) is movably supported by means of a reciprocating slide (34) which is movable back and forth along a reciprocating slide guide means (32) transversely of the reference axis (A), by means of a feed slide (24) adapted to be advanced along a feed slide guide means (22) transversely of the reciprocating slide guide means (32), and by a pivot bearing means (42) defining a pivot axis (B) parallel to the reciprocating slide guide means (32). The tool head (46) is pivotable about the pivot axis (B) by a pivot drive means (60) from a normal position for machining surfaces of the cutting teeth (12) which extend parallel to the reference axis (A) into inclined positions for machining oblique surfaces of the cutting teeth (12). The distance (x) by which the active face (106) of the tool (100) is spaced from the pivot axis (B) can be measured by a measuring means (108). A numerical control means (98) makes sure that the feed slide (24) adopts a position at which the spacing of the pivot axis (B) from the reference axis (A) equals the distance (x) when the tool head (46) is in the normal position, and that the feed slide (24) adopts a respective corrected position when the tool head (46) is in an inclined position.