Abstract:
The present invention discloses a transmission and steering system of a double-head vehicle, comprising a first steering wheel; a front wheel group; a first signal acquisition and transceiver device which can output steering information according to the steering angle of the first steering wheel; a first motor group; a second signal acquisition and transceiver device which can receive the steering information output from the first signal acquisition and transceiver device; a rear wheel group; and a second motor group; such that through the aforementioned structure, when the first steering wheel is turned, the first motor group may be controlled by the first steering wheel to drive the front wheel group to turn and in the mean time, the second signal acquisition and transceiver device may receive the steering information and transmit it to the second motor group to drive the rear wheel group.
Abstract:
A vehicle steering system includes a steering input device, a front steering subsystem, a rear steering subsystem, a first force transmission route, a steering control mechanism, a second force transmission route, and a third force transmission route. The front steering subsystem is coupled to front motive members to steer the front motive members based upon movement of a front steering subsystem input shaft. The rear steering subsystem is coupled to rear motive members to steer the rear motive members based upon movement of a rear steering subsystem input shaft. The first force transmission route extends from the steering input device to the front steering subsystem input shaft, wherein force is transmitted from the input device to the front steering subsystem input shaft to steer the front motive members. The steering control mechanism has a movable input member and a movable output member. The movable input member is movable through a first distance without transmitting force to the output member and is movable through a second distance in which force is transmitted to the output member to move the output member. The second force transmission route extends from the steering input device to the input member, wherein force is transmitted from the input device to the input member to move the input member. The third force transmission route extends from the output member to the rear steering subsystem input shaft to move the rear steering subsystem input shaft and to steer the rear motive members.
Abstract:
In a rear suspension system for a four-wheel-steered vehicle, each wheel support is connected to a rear wheel turning rod so that the rear wheel on the wheel support is turned about a king pin axis when the rear wheel turning rod is displaced. Upper and lower arms define the king pin axis, and the rear wheel on the wheel support is turned about the king pin axis in response to displacement of the rear wheel turning rod. The king pin axis is tilted inward from the vertical and intersects the tread of the rear wheel at a point which is longitudinally offset from the point at which a side force acts on the rear wheel during cornering. A coil spring is connected between the wheel support and the vehicle body and restrains vertical motion of the wheel support under the counterforce thereof. The line of action of the counterforce is tilted with respect to the king pin axis so that it is not parallel to the king pin axis, does not intersect the king pin axis and is directed such that the counterforce generates a moment which tends to turn the rear wheel in the direction opposite to the direction in which the moment generated by the side force acting on the outer of the rear wheels tends to turn the outer rear wheel when the vehicle corners.
Abstract:
The invention relates to a heavy goods vehicle in which the steering system (12) comprises, in addition to a normal steering mode steering device (26) that transfers steering power purely mechanically by means of connecting rods (34) from axle to axle, a crab steering mode steering device (28) that also transfers steering power purely mechanically by means of connecting rods (46) from axle to axle. The individual wheel assemblies (14, 16, 18, 20, 22, 24) can be connected by means of coupling devices (56) either to the normal steering mode steering device (26) or to the crab steering mode steering device (28).
Abstract:
A steering system for a vehicle having a body supported on at least two sets of steerable wheels, generally consisting of a steering shaft provided with a wheel, supported on such body; a torque transmitting main shaft supported longitudinally on the body; means operatively interconnecting the steering shaft and the main shaft for transmitting rotary motion of the steering shaft to rotary motion of the main shaft; a first transversely displaceable means operatively interconnecting knuckle brackets of one of the sets of steerable wheels; a steering gear directly operatively interconnecting the main shaft and the first transversely displaceable means for translating rotary motion of the main shaft to linear motion of the first transversely displaceable means; second transversely displaceable means operatively interconnecting knuckle brackets of the other of the sets of steerable wheels; and a steering gear directly operatively interconnecting the main shaft and the second transversely displaceable means for translating rotary motion of the main shaft to linear motion of the second transversely displaceable means.
Abstract:
In a four wheel steering system, the rear wheel turning mechanism is connected to the front wheel turning mechanism by way of a rear wheel turning angle ratio changing mechanism which is mechanically connected to both the front wheel turning mechanism and the rear wheel turning mechanism and transmits the mechanical displacement input thereinto from the front wheel turning mechanism to the rear wheel turning mechanism to drive the same by an amount the ratio of which to the amount of mechanical displacement input into the rear wheel turning angle ratio changing mechanism gives a predetermined rear wheel turning angle ratio. The rear wheel turning angle ratio changing mechanism is controlled in such a way that, when the front wheels are turned from the neutral position in a middle vehicle speed range, makes the rear wheel turning angle ratio negative for a moment immediately after initiation of turning of the front wheels and thereafter turns the same positive.
Abstract:
The vehicle steering system includes front vehicle motive members, rear vehicle motive members, a steering input device, a front steering subsystem, a rear steering subsystem and a rear steering control mechanism. The front steering subsystem is operably coupled to the steering input device and coupled to the front motive members to steer the front motive members. The rear steering subsystem is coupled to the rear motive members to steer the rear motive members. The rear steering control mechanism includes a movable input member coupled to the steering input device so as to move in response to input from the device and a movable output member coupled to the rear steering subsystem. The rear steering subsystem adjusts steering of the rear motive members in response to movement of the output member. The control mechanism operates in a rear steering state in which force is transmitted from the input member to the output member to move the output member and a dwell state in which the output member does not move in response to movement of the input member.
Abstract:
A steering system for a vehicle having a body supported on at least two sets of steerable wheels, generally consisting of a steering shaft provided with a wheel, supported on such body; a torque transmitting main shaft supported longitudinally on the body; means operatively interconnecting the steering shaft and the main shaft for transmitting rotary motion of the steering shaft to rotary motion of the main shaft; a first transversely displaceable means operatively interconnecting knuckle brackets of one of the sets of steerable wheels; a steering gear directly operatively interconnecting the main shaft and the first transversely displaceable means for translating rotary motion of the main shaft to linear motion of the first transversely displaceable means; second transversely displaceable means operatively interconnecting knuckle brackets of the other of the sets of steerable wheels; and a steering gear directly operatively interconnecting the main shaft and the second transversely displaceable means for translating rotary motion of the main shaft to linear motion of the second transversely displaceable means.
Abstract:
The vehicle steering system includes front vehicle motive members, rear vehicle motive members, a steering input device, a front steering subsystem, a rear steering subsystem and a rear steering control mechanism. The front steering subsystem is operably coupled to the steering input device and coupled to the front motive members to steer the front motive members. The rear steering subsystem is coupled to the rear motive members to steer the rear motive members. The rear steering control mechanism includes a movable input member coupled to the steering input device so as to move in response to input from the device and a movable output-member coupled to the rear steering subsystem. The rear steering subsystem adjusts steering of the rear motive members in response to movement of the output member. The control mechanism operates in a rear steering state in which force is transmitted from the input member to the output member to move the output member and a dwell state in which the output member does not move in response to movement of the input member.
Abstract:
A front and rear wheel steering system for a vehicle has a front steer system (23, 25) and a rear steer system (21, 22) with a rear steer controller (12) functioning to set the rear steer angle in dependence upon front steer angle and vehicle speed. A low load capacity feedback device (14) functions to maintain a predetermined relationship between front and rear wheel steer angles with an overload protector (74, 77, 78) protecting the feedback device (14) from damage due to the application of loads above a predetermined level.