Apparatus and method for the production of active magnesium hydroxide
    3.
    发明授权
    Apparatus and method for the production of active magnesium hydroxide 失效
    用于生产活性氢氧化镁的装置和方法

    公开(公告)号:US5662881A

    公开(公告)日:1997-09-02

    申请号:US143115

    申请日:1993-10-29

    申请人: Akihiko Higuchi

    发明人: Akihiko Higuchi

    IPC分类号: B01J8/00 B01J19/20 C01F5/16

    摘要: Coarse light burned magnesia is comminuted in the wet state with a wet-pulverizer and hydrated in the presence of an alkaline aqueous medium at an elevated temperature of not less than 70.degree. C., the resultant pulverizate is classified into fine and coarse particles using a classifying means, and the coarse particles are recycled to the wet-pulverizer. By subjecting light burned magnesia to concurrent wet-pulverization and hydration in the presence of a heated alkaline aqueous medium, the material magnesia can be simultaneously comminuted and hydrated under rapid heating. Therefore, from light burned magnesia, an active magnesium hydroxide showing a low viscosity even at a high concentration can be efficiently produced at a high rate in a fewer step.

    摘要翻译: 用湿式粉碎机将粗光烧成的氧化镁在湿态下粉碎,并在不低于70℃的高温下在碱性水性介质的存在下水合,得到的粉碎物使用 分级装置,粗颗粒再循环至湿式粉碎机。 在加热的碱性水性介质的存在下,通过使轻烧氧化镁同时进行湿式粉碎和水合,可以在快速加热的同时粉碎和水合该材料氧化镁。 因此,从轻度烧成的氧化镁中,即使高浓度也显示低粘度的活性氢氧化镁,能够在较少的步骤中高效率地生产。

    Finely powdery magnesium hydroxide and a process for preparing thereof
    4.
    发明授权
    Finely powdery magnesium hydroxide and a process for preparing thereof 失效
    细粉状氢氧化镁及其制备方法

    公开(公告)号:US5286285A

    公开(公告)日:1994-02-15

    申请号:US71615

    申请日:1993-06-04

    摘要: A finely powdery magnesium hydroxide especially suitable as a flame-retardant filler for plastic compounds, in which the particles are provided optionally with a thin coating of a surfactant. The grain size of the magnesium hydroxide, measured by laser diffraction, is below 10 .mu.m. The median value of the grain size is greater than 0.8 .mu.m, and the maximum of the median value of the grain size is 3 .mu.m. The contents of water-soluble ionic impurities, viz. Ca.sup.++, Na.sup.+, K.sup.+, SO.sub.4 --, Cl.sup.-, of the magnesium hydroxide are below the following limits (in parts by weight): Ca.sup.++

    摘要翻译: PCT No.PCT / AT90 / 00043 Sec。 371日期1991年3月4日 102(e)1991年3月4日PCT PCT 1990年5月2日PCT公布。 第WO90 / 13516号​​公报 日期为1990年11月15日。一种细粉状氢氧化镁,特别适合用作塑料化合物的阻燃填料,其中颗粒任选地具有表面活性剂的薄涂层。 通过激光衍射测量的氢氧化镁的晶粒尺寸低于10(μm)。 晶粒尺寸的中值大于0.8(my)m,晶粒尺寸中值的最大值为3(my)m。 水溶性离子杂质的含量,即 氢氧化钙的Ca ++,Na +,K +,SO 4 - ,Cl - 低于以下限度(重量份):Ca ++ <1000ppm,Na + <20ppm,K + <20ppm,SO4- <1500ppm,Cl - <1000ppm。 Mn,Cu和Ni的含量低于以下限度(重量份):MnO <100ppm,NiO <100ppm,CuO <10ppm。 制备本发明的氢氧化镁的方法从通过喷雾焙烧除去先前异物的氯化镁溶液获得的氧化镁,向其中加入水进行水合,然后通过过滤除去所得氢氧化镁 蛋糕材料用水进行后洗。

    METHOD FOR PRODUCING MELT-CAST POTASSIUM FLUORINEPHLOGOPITE

    公开(公告)号:US20180002186A1

    公开(公告)日:2018-01-04

    申请号:US15540534

    申请日:2015-10-28

    摘要: The invention relates to the preparation of synthetic melted mica materials, and specifically relates to a stone casting process and to the composition of an initial feedstock, and may be used in the creation of novel types of stone casting in the metallurgical, mining/enrichment, refractory and construction industries. A method for producing melt-cast potassium fluorine-phlogopite includes preparing feedstock by mixing mica-containing and fluorine-containing components, melting the produced feedstock, pouring the melt into a mold, allowing to sit, removing the casting from the mold, and cooling; according to the claimed invention, the mica-containing component consists of vermiculite (60-90 wt % and the fluorine-containing component consists of potassium cryolite 10-40 wt %, wherein, the feedstock is melted via the sequential stepped heating thereof, and the feedstock is prepared by layering components, wherein the top layer of the feedstock consists of a mixture of components, and the melt is poured into a preheated mold. The use of the present invention allows for enhancing the chemical purity of the potassium fluorine-phlogopite, increasing the corrosion and erosion resistance of the material, and improving the accuracy of the chemical composition of the yielded product.