摘要:
The present application pertains to processes producing oxides using a weak acid intermediate. In one embodiment a material comprising calcium carbonate is reacted with a solution comprising aqueous carboxylic acid to form a gas comprising carbon dioxide and a solution comprising aqueous calcium carboxylate. The solution comprising aqueous calcium carboxylate is reacted with sodium sulfate to form a solution comprising aqueous sodium carboxylate and a solid comprising calcium sulfate. The solution comprising aqueous sodium carboxylate is reacted with sulfur dioxide to form sodium sulfite and an aqueous carboxylic acid. The sodium sulfite is separated from said aqueous carboxylic acid and reacted to form a solid comprising calcium sulfite which is decomposed to form calcium oxide and sulfur dioxide.
摘要:
The present application pertains to processes producing oxides using a weak acid intermediate. In one embodiment a material comprising calcium carbonate is reacted with a solution comprising aqueous carboxylic acid to form a gas comprising carbon dioxide and a solution comprising aqueous calcium carboxylate. The solution comprising aqueous calcium carboxylate is reacted with sodium sulfate to form a solution comprising aqueous sodium carboxylate and a solid comprising calcium sulfate. The solution comprising aqueous sodium carboxylate is reacted with sulfur dioxide to form sodium sulfite and an aqueous carboxylic acid. The sodium sulfite is separated from said aqueous carboxylic acid and reacted to form a solid comprising calcium sulfite which is decomposed to form calcium oxide and sulfur dioxide.
摘要:
A method for synthesizing a dicarboxylate containing an aromatic heterocycle is provided. A carboxylic acid containing a heterocycle is provided. A CO32− salt is provided to form a mixture, which converts the carboxylic acid containing an aromatic heterocycle to a carboxylate containing an aromatic heterocycle. CO2 gas is provided to the mixture. The mixture is heated to a temperature to at least partially melt the carboxylate containing an aromatic heterocycle.
摘要:
A method for synthesizing furan-2,5-dicarboxylate (FDCA2−) is provided. Furan-2-carboxylic acid is provided. A CO32− salt is provided to form a mixture, which converts the furan-2-carboxylic acid to furan-2-carboxylate. CO2 gas is provided to a mixture of the furan-2-caboxylic acid and CO32− salt. The mixture is heated to a temperature to at least partially melt the furan-2-caboxylate.
摘要:
The present invention relates to molecular isotopic engineering. The present invention relates to a method or process for preparing a target compound of a statistically defined isotopic composition comprising the step of reacting one or more reactant compounds, wherein each reactant compound is of a statistically defined isotopic composition. The reactant compound is reacted in a chemical process or a biological process thereby generating an isotopic mass balance, or further, an isotopic fractionation to produce the target compound. The present invention also relates to a statistically defined isotopic composition of a target compound. The statistically defined isotopic composition comprises an internal marker, and can be used as, for example, a security feature, an identity indicator, or a purity indicator of the target compound.
摘要:
The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant and at least one of an alkane, haloalkane, alkene, haloalkene, aromatic compound, haloaromatic compound, heteroaromatic compound or halo-heteroaromatic compound. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
摘要:
A process for preparing [(1R,2R)-4-oxo-1,2-cyclopentanedicarboxylic acid II, by the resolution of racemic 4-oxo-1,2-cyclopentanedicarboxylic acid (V), said process comprising: (a) reacting 4-oxo-1,2-cyclopentanedicarboxylic acid (V) with brucine or (1R,2S)-(−)-ephedrine, thus preparing the bis-brucine or bis-(1R,2S)-(−)-ephedrine salt of (V), and (b) precipitating selectively the bis-brucine or bis-(1R,2S)-(−)-ephedrine salt of (1R,2R)-4-oxo-1,2-cyclopentanedicarboxylic acid II, while the bis-brucine or bis-(1R,2S)-(−)-ephedrine salt of [(1S,2S)-4-oxo-1,2-cyclopentanedicarboxylic acid stays in solution; (c) liberating the acid II by removal of brucine or (1R,2S)-(−)-ephedrine from the precipitated salt obtained in step (b).
摘要:
A method for processing MgCl2 solutions including the steps of: providing an aqueous solution including 5-25 wt. % of MgCl2 and optionally organic contaminants to a step, wherein water and present, organic components are evaporated; withdrawing aqueous solution with a MgCl2 concentration of 25-35 wt. % from an evaporation step and providing it to a preconcentrator where it is contacted with a HCl containing gas stream at least 300° C.; providing aqueous solution with a MgCl2 concentration of 35-45 wt. % resulting from the preconcentrator to a thermohydrolysis reactor, being at at least 300° C.; withdrawing MgO from the thermohydrolysis reactor in solid form, and withdrawing a HCl containing gas stream from the thermohydrolysis reactor, said HCl-containing gas stream at least 300° C.; providing the HCl-containing gas stream with at least 300° C. to the preconcentrator; withdrawing a HCl-containing gas stream with a temperature of at most 150° C. from the preconcentrator.
摘要:
The present disclosure includes a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide, producing a first product which may include carbon monoxide or an alkli metal formate. The method may include another step of contacting the second region with an anolyte comprising a sulfur-based reactant and producing a second product including oxygen and sulfur dioxide. Further, the method may include a step for introducing the separated oxygen from second region of the electrochemical cell with a hydrogen sulfide stream in a catalyst reactor bed, converting the hydrogen sulfide to sulfur dioxide. The sulfur dioxide may then be liquefied as a product, or a portion of the sulfur dioxide may be recycled to the second region of the electrochemical cell where it may be converted to sulfuric acid. The sulfuric acid may then be reacted with another reactant, such as ammonia, to produce an ammonium sulfate product.
摘要:
The present invention relates to novel Ruthenium complexes and related borohydride complexes, and their use for (1) hydrogenation of amides (including polyamides) to alcohols and amines; (2) preparing amides from alcohols with amines (including preparing polyamides (e.g., polypeptides) by reacting dialcohols and diamines or by polymerization of amino alcohols); (3) hydrogenation of esters to alcohols (including hydrogenation of cyclic esters (lactones), cyclic di-esters (di-lactones) or polyesters); (4) hydrogenation of organic carbonates (including polycarbonates) to alcohols and of carbamates (including polycarbamates) or urea derivatives to alcohols and amines; (5) dehydrogenative coupling of alcohols to esters; (6) hydrogenation of secondary alcohols to ketones; (7) amidation of esters (synthesis of amides from esters and amines); (8) acylation of alcohols using esters; (9) coupling of alcohols with water to form carboxylic acids; and (10) dehydrogenation of beta-amino alcohols to form pyrazines. The present invention further relates to novel uses of certain pyridine Ruthenium complexes.