Abstract:
Olefins such as ethylene and propylene may be polymerized by using as catalysts novel selected transition metal complexes of bis(carboximidamidatonates) in which the carboximidamidatonate groups are connected together through covalent bonds by a bridging group. The resulting polymers are useful as molding and extrusion resins.
Abstract:
A process for producing a polar olefin copolymer comprises copolymerizing a non-polar olefin and a polar olefin in the presence of a transition metal compound selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV): 1 wherein Mnull is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table, m is an integer of 1 to 6, A is nullOnull, nullSinull, nullSenull, nullN(R6)null, n is a number satisfying a valence of Mnull, R1 to R4 and R6 are each a hydrogen atom, a halogen atom, a hydrocarbon group and the like, and X is a halogen atom, an oxygen atom, a hydrocarbon group and the like, and at least one compound (B) selected from the group consisting of an organometallic compound (B-1), an organoaluminum oxy-compound (B-2) and an ionic ionizing compound (B-3). Therefore, the process is capable of obtaining a polar olefin copolymer having excellent properties under mild polymerization conditions.
Abstract:
A process for producing a polar olefin copolymer comprises copolymerizing a non-polar olefin and a polar olefin in the presence of a transition metal compound selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV): wherein M′ is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table, m is an integer of 1 to 6, A is —O—, —Si—, —Se—, —N(R6)—, n is a number satisfying a valence of M′, R1 to R4 and R6 are each a hydrogen atom, a halogen atom, a hydrocarbon group and the like, and X is a halogen atom, an oxygen atom, a hydrocarbon group and the like, and at least one compound (B) selected from the group consisting of an organometallic compound (B-1), an organoaluminum oxy-compound (B-2) and an ionic ionizing compound (B-3). Therefore, the process is capable of obtaining a polar olefin copolymer having excellent properties under mild polymerization conditions.
Abstract:
A process for producing a polar olefin copolymer comprises copolymerizing a non-polar olefin and a polar olefin in the presence of a transition metal compound selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV): wherein M′ is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table, m is an integer of 1 to 6, A is —O—, —Si—, —Se—, —N(R6)—, n is a number satisfying a valence of M′, R1 to R4 and R6 are each a hydrogen atom, a halogen atom, a hydrocarbon group and the like, and X is a halogen atom, an oxygen atom, a hydrocarbon group and the like, and at least one compound (B) selected from the group consisting of an organometallic compound (B-1), an organoaluminum oxy-compound (B-2) and an ionic ionizing compound (B-3). Therefore, the process is capable of obtaining a polar olefin copolymer having excellent properties under mild polymerization conditions.
Abstract:
Olefins such as ethylene and propylene may be polymerized by using as catalysts novel selected transition metal complexes of bis(carboximidamidatonates) in which the carboximidamidatonate groups are connected together through covalent bonds by a bridging group. The resulting polymers are useful as molding and extrusion resins.
Abstract:
A process for producing a polar olefin copolymer comprises copolymerizing a non-polar olefin and a polar olefin in the presence of a transition metal compound selected from Groups 4, 5, 6 and 11 of the periodic table, which is represented by the following formula (IV): wherein M′ is a transition metal atom selected from Groups 4, 5, 6 and 11 of the periodic table, m is an integer of 1 to 6, A is —O—, —Si—, —Se—, —N(R6)—, n is a number satisfying a valence of M′, R1 to R4 and R6 are each a hydrogen atom, a halogen atom, a hydrocarbon group and the like, and X is a halogen atom, an oxygen atom, a hydrocarbon group and the like, and at least one compound (B) selected from the group consisting of an organometallic compound (B-1), an organoaluminum oxy-compound (B-2) and an ionic ionizing compound (B-3). Therefore, the process is capable of obtaining a polar olefin copolymer having excellent properties under mild polymerization conditions.
Abstract:
Olefins such as ethylene and propylene may be polymerized by using as catalysts novel selected transition metal complexes of bis(carboximidamidatonates) in which the carboximidamidatonate groups are connected together through covalent bonds by a bridging group. The resulting polymers are useful as molding and extrusion resins.