Abstract:
There is provided a technique for producing a quinacridone solid solution pigment, the technique making it possible to obtain a quinacridone solid solution pigment which produces a colored product having high chroma and a bluish hue, more preferably which has controlled particle diameters. Specifically, a method for producing a quinacridone solid solution pigment, the method including a crude quinacridone solid solution production step of subjecting a diarylaminoterepththalic acid and a dialkylarylaminoterephthalic acid to a co-cyclization reaction in polyphosphoric acid, thereby obtaining a water-containing crude quinacridone solid solution containing a solid solution of an unsubstituted quinacridone and a 2,9-dialkylquinacridone, the solid solution containing water, a drying step of drying the water-containing crude quinacridone solid solution to reduce the water content to less than 1% and obtain a powdery, crude quinacridone solid solution, and a pigmentation step of heating the powdery, crude quinacridone solid solution in a liquid medium that cannot dissolve the crude quinacridone solid solution.
Abstract:
There is provided a photoelectric conversion film including a quinacridone derivative represented by the following General formula and a subphthalocyanine derivative represented by the following General formula.
Abstract:
A process for the production of a quinacridone pigment composition is provided. For use in environmentally friendly inks, the pigment composition offers high chroma, high color strength, and high dispersion stability. Also provided is a water- or alcohol-based environmentally friendly ink that contains a quinacridone pigment composition obtained through this process. According to the inventors' research, adding a quinacridone derivative to a quinacridone solid solution in two different steps in a process, during and after treatment for the control of crystals, gives the resulting pigment composition the color characteristics of high color strength and high chroma, as well as high dispersion stability. The present invention is based on these findings.
Abstract:
The present invention provides a process for producing a colored fine particle dispersion suitably used in a water-based ink for ink-jet printing which can be produced by an emulsion polymerization method even when using a pigment having a quinacridone skeleton, is excellent in storage stability, and can provide printed characters or images having excellent rub fastness when printed on a recording medium; the colored fine particle dispersion; and a process for producing a water-based ink for ink-jet printing which includes the colored fine particle dispersion. The present invention relates to [1] a process for producing a colored fine particle dispersion including the step of subjecting a dispersion including a pigment, a polymerizable monomer, a surfactant, a polymerization initiator and water to emulsion polymerization, the pigment being a pigment having a quinacridone skeleton; the surfactant being an anionic or nonionic surfactant; and the polymerization initiator including an anionic or nonionic azo-based compound, [2] a colored fine particle dispersion including colored fine particles having an average particle size of not less than 10 nm and not more than 300 nm, and [3] a process for producing a water-based ink for ink-jet printing, including the step of mixing the obtained colored fine particle dispersion and an organic solvent B.
Abstract:
A method for producing an aqueous pigment dispersion liquid, including: a kneading step of kneading a mixture of a quinacridone pigment (a), a pigment derivative (b), an organic high-molecular compound having an anionic group (c), a basic compound (d), and an acetylene glycol surfactant (e) in a closed kneader to prepare a pigment-kneaded material having a solid content in the range of 50% to 80% by mass; and a step of diluting the pigment-kneaded material with an aqueous medium. A method for producing a water-based ink for ink jet recording, including a step of diluting the aqueous pigment dispersion liquid with an aqueous medium.
Abstract:
Polymer shells similar to those described in U.S. Pat. No. 6,822,782 can be formed on pigment particles by (a) physi-sorping a reagent comprising polymerizable groups on to the pigment particles by treating the particle with a reagent having a polymerizable or polymerization-initiating group, such that the reagent will not desorb from the particle surface when the particle is placed in a hydrocarbon medium; or (b) treating pigment particles bearing nucleophilic groups with a reagent having a polymerizable or polymerization-initiating group, and an electrophilic group, thus attaching the polymerizable or polymerization-initiating groups to the particle surface. The zeta potential of the pigment particles can be varied by a process similar to (b) but using a reagent which does not have a polymerizable or polymerization-initiating group.
Abstract:
2,5-di(p-methoxyanilino)terephthalic acid crystal types I and II are made by controlling the pH during the recovery of the oxidized product of the condensation of dimethylsuccinyl succinate with p-methoxyaniline. The resulting 2,5-di(p-methoxyanilino)-terephthalic acid can be converted into 2,9-dimethoxyquinacridone or a solid solution thereof having controlled characteristics.
Abstract:
The present invention provides: a pigment dispersion composition including (A) an organic pigment, (B) a pigment derivative represented by Formula (I) below and (C) a polymer compound having a pigment-adsorptive functional group; a curable color composition including the pigment dispersion composition, a polymerizable compound and a polymerization initiator; and a color filter having a color region formed using the curable color composition and a method for producing the same. Q represents an organic colorant residue; A represents an ethylene group or the like; and R represents a hydroxyl group or a group represented by —NH-A-Z; Z represents —SO3H, —COOH or a salt thereof; and n represents an integer of from 1 to 4. When R represents —NH-A-Z, the structures represented by the two —NH-A-Zs bonded to the triazine ring contained in each of the n partial structures bonded to Q may be the same as each other or different from each other.
Abstract:
A non-aqueous pigment dispersion includes a diketopyrrolo-pyrrole pigment, a polymeric dispersant, and a dispersion synergist in a dispersion medium wherein the dispersion synergist is a quinacridone derivative containing at least one acid group or a salt thereof.
Abstract:
A non-aqueous inkjet ink includes a quinacridone pigment and a dispersion synergist wherein the quinacridone pigment is a mixed crystal including a dimethyl substituted quinacridone and a monomethyl substituted quinacridone and the dispersion synergist includes at least one acid group.