摘要:
Provided herein, in some embodiments, are systems, methods, and compositions (e.g., cells and cell lysates) for enzymatically converting a polymeric glucose carbohydrate (e.g., starch) to sugar.
摘要:
Provided are a recombinant microorganism modified by means of genetic engineering and an application of the recombinant microorganism in production of tagatose, a preparation method for the recombinant microorganism, a tagatose production strain and a tagatose production method. According to the recombinant microorganism, the tagatose is produced by taking glucose as a substrate or taking glycerol and glucose as substrates; the efficiency of conversion and production of tagatose by means of the recombinant microorganism is high, and a multi-enzyme purification process step is not needed.
摘要:
There are provided a highly safe epimerase usable in food industry, and a method for producing a ketose. The epimerase is a ketose 3-epimerase obtainable from a microorganism of the genus Arthrobacter, and having the amino acid sequence represented by SEQ ID NO: 1 of the Sequence Listing, and (1) substrate specificity whereby a D- or L-ketose is epimerized at position 3 to produce a corresponding D- or L-ketose, and (2) the highest substrate specificity for D-fructose and D-psicose among D- and L-ketoses. The ketose 3-epimerase is also represented by SEQ ID NO: 3 or SEQ ID NO: 4 of the Sequence Listing, and epimerizes a D- or L-ketose at position 3 to produce a corresponding D- or L-ketose.
摘要:
Yeast cell belonging to the genus Saccharomyces having introduced into its genome at least one xylA gene and at least one of each of araA, araB and araD genes and that is capable of consuming a mixed sugar mixture comprising glucose, xylose and arabinose, wherein the cell co-consumes glucose and arabinose, has genetic variations obtained during adaptive evolution and has a specific xylose consumption rate in the presence of glucose that is 0.25 g xylose/h, g DM or more.
摘要:
Provided herein, in some embodiments, are systems, methods, and compositions (e.g., cells and cell lysates) for enzymatically converting a polymeric glucose carbohydrate (e.g., starch) to sugar.
摘要:
There are provided a highly safe epimerase usable in food industry, and a method for producing a ketose. The epimerase is a ketose 3-epimerase obtainable from a microorganism of the genus Arthrobacter, and having the amino acid sequence represented by SEQ ID NO: 1 of the Sequence Listing, and (1) substrate specificity whereby a D- or L-ketose is epimerized at position 3 to produce a corresponding D- or L-ketose, and (2) the highest substrate specificity for D-fructose and D-psicose among D- and L-ketoses. The ketose 3-epimerase is also represented by SEQ ID NO: 3 or SEQ ID NO: 4 of the Sequence Listing, and epimerizes a D- or L-ketose at position 3 to produce a corresponding D- or L-ketose.
摘要翻译:提供了可用于食品工业的高度安全的差向异构酶和生产酮糖的方法。 差向异构酶是从节杆菌属的微生物获得并具有由序列表的SEQ ID NO:1表示的氨基酸序列的酮糖3-差向异构酶,和(1)底物特异性,其中D-或L-酮糖是 在3位差向异构化以产生相应的D-或L-酮糖,和(2)D-和L-酮糖之中D-果糖和D-灵芝蛋白的最高底物特异性。 酮基3-差向异构酶也由序列表的SEQ ID NO:3或SEQ ID NO:4表示,并且在3位差异化D-或L-酮糖以产生相应的D-或L-酮糖。