摘要:
The disclosure relates to a beneficiation process for low grade uranium ore, wherein the process comprises a primary beneficiation stage comprising: wet scrubbing the low grade uranium ore to separate the low grade ore into a fine fraction and a coarse fraction; screening the fine fraction according to a size separation parameter to provide an undersize fraction and an oversize fraction, wherein the uranium predominantly reports to the undersize fraction; and separating the undersize fraction to produce an intermediate uranium concentrate. The intermediate uranium concentrate may be further processed in a secondary beneficiation stage to produce a high grade uranium concentrate.
摘要:
The proposed methods are exemplarily utilized in uranium hydrometallurgy for selective extraction of uranium out of ore by in situ or heap leaching. According to the disclosure, the methods encompass catalytic oxidation of U4+ to U6+ using a proposed oxidizing catalyst “Muhamedzhan-1”, filtration of this solution through ore, transferring hexavalent uranium, trivalent iron, and other metal ions into a production solution, extraction of uranium yielding a barren solution and re-circulation of this solution back for ore leaching. The methods essentially improve known technologies by employing “Muhamedzhan-1”, being a solution of d- and f-mixed valence metal salts (MLn, wherein M=Fe, U, Cu, Mn, and L=NO3−, SO42−Cl−, Br−, I−) and alkali metal halogenides (MX, wherein M=Na+, Na+, K+, and X=Cl−, Br−, I−) used as an oxidizing agent, with the weight ratio of MLn: 0.01-25.0%, MX: 0.01-12.5%, and solvent: balance.
摘要:
A process for the selective removal of arsenical material in the course of a process for the hot oxidizing attack on a uraniferous and/or molybdeniferous ore containing arsenical materials, comprising attacking said ore with an aqueous liquor of sodium or potassium carbonate and/or bicarbonate, said attack operation being carried out under conditions with respect to levels of concentration, temperatures and pressures which cause solubilization of the uranium and/or molybdenum and the arsenic present in the ore, then collecting a suspension of a solid phase in a liquid phase, and finally, separating said phases, wherein the arsenic which is solubilized in the attack operation is extracted in the form of magnesium arsenate by treating the material containing the arsenic with a magnesium compound.
摘要:
A process for recovering one or more nonradioactive transition metal compounds from an ore containing one or more compounds of said transition metal or metals and further containing at least one complex of a member selected from the group consisting of uranium, thorium, radium, titanium, and rare earth metals, which comprises decomposing said ore in crushed condition by means of an acid so that a portion of the ore is brought into solution in a liquid phase and another portion of the ore remains in a solid phase, said compound or compounds of the transition metal or metals to be recovered passing into only the liquid or into only the solid phase, the uranium in the crushed ore being treated so as to cause substantially all of said uranium to be present in an oxidation state in which it cannot, during the decomposition step, pass into the phase containing the transition metal compound or compounds.
摘要:
The present invention concerns a continuous process for the oxidizing attack of a uraniferous ore by means of an aqueous recycling liquor which contains in a dissolved state alkaline carbonate and bicarbonate and uranium at a concentration close to the limit of solubility thereof at the temperature of the attack operation. The uranium which is precipitated in the course of the attack operation is collected within the solid phase which remains after attack. By redissolution in a suitable aqueous liquor and separation from the sterile materials, a uraniferous liquor is obtained.
摘要:
Method and apparatus for mixing a gaseous oxidant (e.g., oxygen) and a lixiviant (e.g., an aqueous carbonate solution) at a downhole location before the oxygen-saturated lixiviant is injected into a formation to be leached. The invention involves establishing a mixing zone in the well by positioning a mixing means, comprising a housing, in the well at the downhole location. Lixiviant is flowed down the well and through a restrictive opening in the housing to substantially increase the flow velocity of the lixiviant. At the same time, gaseous oxidant is fed to the housing and is trapped therein by the increased velocity of the lixiviant and by packing material in said housing. The lixiviant flows through the trapped oxidant which, in turn, dissolves into the lixiviant to saturate same. Additional packing material is provided in the housing to remove undissolved oxidant from the saturated lixiviant before it is injected into a formation to be leached.
摘要:
A method for leaching mineral values from an underground ore body in situ comprises introducing an oxygen-bearing gas into a pressurized saturation-disengagement chamber located above ground of the ore body where the oxygen-bearing gas becomes dissolved in a leach solution. The leach solution with dissolved oxygen therein is then pumped into the well and through the ore body where the leach solution oxidizes the mineral values in the ore body permitting their solubilization and transport by the leach solution to a recovery well where the pregnant leach solution is pumped above ground. The pregnant leach solution is then treated to remove the mineral values therefrom. Insuring that the oxygen-bearing gas is completely dissolved in the leach solution above ground in the saturation-disengagement chamber prevents gas bubbles from being pumped into the ore formation, thereby preventing loss of injectivity.