Abstract:
In a method for surface treatment of stainless steel, the thermally produced layers of oxide are contacted with a composition effective to dissolve iron ions out of the layers of oxide.
Abstract:
A coating film removal method for a coated member having a coating film formed over the surface of a substrate is disclosed, which can easily achieve a coating film removal, even for a carbon-based coating film containing carbon as a main component, besides a carbon-based coating film containing a metal element etc. A coated member regeneration method is also disclosed, which removes a coating film from a coated member, and then forms a new coating film over the member, to regenerate the coated member. The coating film removal method is adapted to remove a carbon-based coating film from a coated member (10) including a substrate, and the carbon-based coating film coated on at least a portion of a surface of the substrate while containing carbon as a main component. The coating film removal method includes bringing a molten salt having an oxidizing function for carbon into contact with the carbon-based coating film, to remove at least a portion of the carbon-based coating film coated over the surface of the substrate. A coated member regeneration method includes removing the carbon-based coating film from the coated member, using such coating film removal method, and subsequently forming a coating film on at least a portion of a surface of the film-removed member (11).
Abstract:
Prior art methods for removing a layer area of a component (stripping) lead to poor results since a removal, for example, ensues in a nonuniform manner. In addition, these prior art methods are time intensive. An inventive method for removing a layer area of a component consists of firstly treating the layer areas to be removed with a salt solution and then with acid, whereby in an intermediate or final step, the component is treated with a complexing agent.
Abstract:
IN A METHOD OF CLEANING ANODES COMPRISING A CONDUCTIVE BASE COATED WITH NOBLE METALS OR CHEMICAL COMPOUNDS THEREOF, THE ANODES ARE TREATED WITH A MELT CONTAINING A BASIC MATERIAL AT A SPECIFIC TEMPERATURE AND IN THE PRESENCE OF AN OXIDANT OR OXYGEN.
Abstract:
Metals having metal oxide scales are descaled with molten sodium metal. The descaling can be preceded and followed by treatment of the metal with molten alkali metal hydroxide.
Abstract:
A method of repairing service-induced surface cracks (92) in a superalloy component (90). A layer of powdered flux material (100) is applied over the cracks and is melted with a laser beam (98) to form a re-melted zone (104) of the superalloy material under a layer of slag (106). The slag cleanses the melt pool of contaminants that may have been trapped in the cracks, thereby eliminating the need for pre-melting fluoride ion cleaning. Optionally, alloy feed material may be applied with the powdered flux material to augment the volume of the melt or to modify the composition of the re-melted zone.
Abstract:
A coating film removal method for a coated member having a coating film formed over the surface of a substrate is disclosed, which can easily achieve a coating film removal, even for a carbon-based coating film containing carbon as a main component, besides a carbon-based coating film containing a metal element etc. A coated member regeneration method is also disclosed, which removes a coating film from a coated member, and then forms a new coating film over the member, to regenerate the coated member. The coating film removal method is adapted to remove a carbon-based coating film from a coated member (10) including a substrate, and the carbon-based coating film coated on at least a portion of a surface of the substrate while containing carbon as a main component. The coating film removal method includes bringing a molten salt having an oxidizing function for carbon into contact with the carbon-based coating film, to remove at least a portion of the carbon-based coating film coated over the surface of the substrate. A coated member regeneration method includes removing the carbon-based coating film from the coated member, using such coating film removal method, and subsequently forming a coating film on at least a portion of a surface of the film-removed member (11).