摘要:
A cleaning solution for a turbine engine includes water; a first organic acidic component that comprises citric acid; a second organic acidic component that comprises glycolic acid; isopropylamine sulphonate; alcohol ethoxylate; triethanol amine; and sodium lauriminodipropionate. The cleaning solution has a pH value between about 2.5 and about 7.0.
摘要:
Disclosed is a method for continuous thermal treatment of a steel strip. The strip passes through consecutive thermal treatment chambers, is quickly cooled in at least one of the chambers by spraying liquid onto the strip, or by spraying a fluid made up of gas and liquid or spraying a combination of gas and liquid forming a mist. After quick cooling, a protective metal layer is deposited on the strip by dip coating. The cooling fluid strips iron oxides or other alloy elements contained in the steel to be treated, minimizing oxidation and reducing the oxides on the strip. Spray pressure and distance are chosen to facilitate the stripping property and the mechanical action of the sprayed fluid, reducing the layer of oxides on the strip. The temperature of the strip at the end of the cooling step is the temperature necessary for carrying out the desired treatment cycle.
摘要:
The present disclosure relates to compositions and methods for the removal of deposits from oilfield apparatus and wellbore surfaces. In particular, removal of deposits comprising heavy hydrocarbon materials and finely divided inorganic solids. The composition includes a mixture of a corrosion inhibitor component which is morpholine or a morpholine derivative having corrosion inhibitor properties, and a surfactant which is a quaternary ammonium compound having biocidal properties. Methods of removing a deposit from a surface or unplugging an oilwell which has been plugged with a deposit, are also included wherein the method comprising contacting the deposit with a composition as disclosed herein for a selected period of time.
摘要:
The present disclosure provides methods and systems for in situ cleaning of hot gas flowpath components of a turbine engine that form portions of a hot gas flowpath extending through the turbine. The hot gas flowpath components may include a layer of accumulated contaminants on first portions thereof that form a respective portion of the hot gas flowpath. The first portions may include a thermal battier coating (TBC), and the layer of accumulated contaminants may overlie the TBC and at least partially infiltrate into the TBC. The accumulated contaminants may include CaO—MgO—Al2O3-SiO2 (CMAS) partial melt. The methods may include introducing an acid-including detergent into the hot gas flowpath of the turbine engine and onto the hot gas flowpath components to clean the accumulated contaminants from the first surfaces of the components.
摘要:
A stainless steel separator for fuel cells and a method of manufacturing the same are disclosed. The method includes preparing a stainless steel sheet as a matrix, performing surface modification on a surface of the stainless steel sheet to form a Cr-rich passive film having a comparatively increased amount of Cr in a superficial layer of the stainless steel sheet by decreasing an amount of Fe in the superficial layer of the stainless steel sheet, and forming a coating layer on the surface of the surface-modified stainless steel sheet. The coating layer is one selected from a metal nitride layer (MNx), a metal/metal nitride layer (M/MNx), a metal carbide layer (MCy), and a metal boride layer (MB) (where 0.5≦x≦1, 0.42≦y≦1, 0.5≦z≦2).
摘要:
A stainless steel separator for fuel cells and a method of manufacturing the same are disclosed. The method includes preparing a stainless steel sheet as a matrix, performing surface modification on a surface of the stainless steel sheet to form a Cr-rich passive film having a comparatively increased amount of Cr in a superficial layer of the stainless steel sheet by decreasing an amount of Fe in the superficial layer of the stainless steel sheet, and forming a coating layer on the surface of the surface-modified stainless steel sheet. The coating layer is one selected from a metal nitride layer (MNx), a metal/metal nitride layer (M/MNx), a metal carbide layer (MCy), and a metal boride layer (MBz) (where 0.5≦x≦1, 0.42≦y≦1, 0.5≦z≦2).
摘要:
A stainless steel separator for fuel cells and a method of manufacturing the same are disclosed. The method includes preparing a stainless steel sheet as a matrix, performing surface modification on a surface of the stainless steel sheet to form a Cr-rich passive film having a comparatively increased amount of Cr in a superficial layer of the stainless steel sheet by decreasing an amount of Fe in the superficial layer of the stainless steel sheet, and forming a coating layer on the surface of the surface-modified stainless steel sheet. The coating layer is one selected from a metal nitride layer (MNx), a metal/metal nitride layer (M/MNx), a metal carbide layer (MCy), and a metal boride layer (MBz) (where 0.5≦x≦1, 0.42≦y≦1, 0.5≦z≦2).
摘要:
Provided is a method for treating scales (101) that have formed on the outer surface of a heat-conducting tube (111) and in a hole (112a) of a tube support plate (112) etc. of a steam generator of a nuclear power plant. The scales (101) are embrittled and also converted to a porous state by bringing the scales (101) into contact with a treatment solution, which contains 0.5 to 3.5 wt % of an organic acid and is at a pH of 2 to 3.5, for 2 to 30 days at 20° C. to 40° C.
摘要:
A biodegradable acid cleaning composition for cleaning stainless steel, and other surfaces is disclosed. The composition comprises urea sulfate in combination with gluconic acid which serves as a corrosion inhibitor. The composition retains the cleaning and corrosion prevention properties of similar phosphoric acid solutions but is safe for the environment and is less expensive to produce. Applicants have surprisingly found that the traditionally alkaline corrosion inhibitor, gluconic acid, can work effectively in an acidic cleaning composition.
摘要:
A liquid detergent composition is described. The liquid detergent composition includes an emulsion having a water phase and an oil phase. The liquid detergent composition includes a detersive amount of a nonionic surfactant component, an emulsion stabilizing amount of a cationic surfactant component, about 5 wt. % to about 94 wt. % water, and at least about 5 wt. % of a suspended particulate component. A detergent use solution and methods for using a liquid detergent composition are described.