Abstract:
A work machine includes an unload lever swingably supported by an operation box, the unload lever being configured to be swung to select whether or not to supply an operation fluid to the hydraulic actuator. The unload lever includes a second guide pin to move in a first guide groove in accordance with the swinging of the unload lever, the second guide pin being positioned on a first end of the first guide groove when the unload lever is positioned to a pushed-down position and positioned on a second end of the first guide groove when the unload lever is positioned to a pulled-up position. The first guide groove includes a first latch portion to latch the second guide pin at the first end of the first guide groove, and a second latch portion to latch the second guide pin at the second end of the first guide groove.
Abstract:
An apparatus for controlling bucket movement for automatically shaking off foreign substances is disclosed, which includes a bucket movement control unit controlling the bucket movement by determining whether to output an automatic control signal for automatically driving the bucket forward and backward at a predetermined speed even if an input value of a joystick is not changed or to output a manual control signal for driving the bucket according to an operation value of the joystick, in accordance with a selection/non-selection of an automatic mode by an automatic mode selection switch, an operation value detected by an operation value detection means, and an operation angle detected by an operation angle detection means, and outputting a corresponding signal to a bucket driving unit. The movement of the bucket can be automatically controlled so as to control the foreign substances contained in the bucket and to sprinkle earth and sand without any separate operation of an operator.
Abstract:
A method and arrangement for controlling a function of a work implement utilizing a device including a source of pressurized fluid (1), a circuit of pressurized fluid (2) for driving the work implement, an electronically controlled hydraulic valve (5) being arranged in the circuit of pressurized fluid (2) for controlling the function of the work implement, a control unit (4) for controlling the hydraulic valve (5) based upon a signal from a control member (3) for transmitting a control command to the control unit (4), wherein the control unit (4) is arranged for controlling the hydraulic valve (5) in accordance with a smooth mode function or an abrupt mode function. The opening time for opening the hydraulic valve (5) to a predetermined opening degree is changed when switching from one operating mode function to the other operating mode function.
Abstract:
The invention relates to a construction machine comprising a transmission, at least one hydraulic drive and a hydraulic circuit for supplying the hydraulic drive with hydraulic fluid, wherein at least one lubrication line is branched off from the hydraulic circuit, by means of which the transmission can be supplied with hydraulic fluid as a lubricant. The invention is characterized in that a dosing device is provided on the lubrication line, with which the supply of lubricant can be changed depending on an operating condition of the transmission.
Abstract:
An apparatus and method for creating vibration of an appendage of a work vehicle is disclosed. The apparatus includes a hydraulic cylinder, first and second valve assemblies, and a control element. The hydraulic cylinder is coupled between a first portion of the work vehicle and the appendage and includes a first chamber, a second chamber, and a piston. The first and second valve assemblies respectively govern whether hydraulic fluid is provided from a pump to, or to a tank from, the first and second chambers. The control element automatically causes a status of the second valve assembly to repeatedly alternate with time so that the vibration occurs at the piston and is in turn provided to the appendage.
Abstract:
In a material working (e.g. penetrating, loading, compacting) machine the power and machine weight needed to achieve a given performance can be reduced by making one (50) of two pivots (34, 50) at which a working implement such as a bucket 14 is supported an eccentric pivot and driving it by means of a motor (36). The circular vibration of the bucket at pivot (50) combined with arcuate vibration which results and is permitted at pivot (34) by means of link (30), causes the working portion namely bucket teeth (56), to vibrate on a closed elongate curved path 58. This improves penetration and loading performance of the bucket without requiring excessive power to generate the vibrations.
Abstract:
A fluid operated reciprocatable device has an outer, usually fixed, membernd an inner relatively movable member joined by a resilient member e.g., of rubber. The outer member is closed at one end so as to form an enclosure into which fluid under pressure can be admitted so as to displace the inner member in a given axial direction relative to the outer member. When a pulsating pressure is applied to the fluid the inner member vibrates axially in accordance with the pulses. The resilient member is proportioned so that its dimension in the axial direction is large in comparison with the thickness between the outer and inner members, e.g. 4 times larger. The properties of the resilient member are chosen so that it acts not only as a seal between the outer and inner members to contain fluid, but as a return spring whereby the inner member is returned, between fluid pulses, from an axially displaced position.
Abstract:
A working machine comprising a ground engaging structure and a propulsion system for moving the working machine via the ground engaging structure. A body is supported on the ground engaging structure, and a working arm is connected to the body and has a carriage at one end for receiving an attachment. A control system is provided for selectively and variably oscillating the carriage.
Abstract:
A system and method for controlling shakability of a work tool. A series of input commands from a control unit to the hydraulic pump cause the hydraulic pump to cycle between a first displacement (maximum) at a first rate (maximum) and a second displacement (zero) at a second rate (less than maximum), within a predetermined frequency. Ultimately, the hydraulic pump remains in a partially upstroked position at the beginning of every cycle. Accordingly, within a small fraction of time after upstroking, the pump is capable of providing full flow to the actuators, resulting in much faster response and movement of the actuators, and therefore improved shakability of the work implement.
Abstract:
A system and method for controlling shakability of a work tool. A series of input commands from a control unit to the hydraulic pump cause the hydraulic pump to cycle between a first displacement (maximum) at a first rate (maximum) and a second displacement (zero) at a second rate (less than maximum), within a predetermined frequency. Ultimately, the hydraulic pump remains in a partially upstroked position at the beginning of every cycle. Accordingly, within a small fraction of time after upstroking, the pump is capable of providing full flow to the actuators, resulting in much faster response and movement of the actuators, and therefore improved shakability of the work implement.