摘要:
The present disclosure relates to assemblies for engines such as pre-combustion chamber assemblies for spark ignition engines. It is known to provide a spark ignition engine with a pre-combustion chamber but it can be difficult to provide a system with good knock performance at high speed with high loads while still having reliable ignition at low speed with low load. In particular, at low speed with low load, there may be a relatively high percentage of exhaust gas residuals (EGR) in a pre-combustion chamber which can prevent ignition especially when the ignition timing is retarded during catalyst heating. Aspects of the disclosure aim to alleviate at least to a certain extent the problems of the prior art. According to a first aspect there is provided a pre-combustion chamber assembly for a spark ignition engine, the assembly having: an ignition chamber adapted to contain at least one electrode of a spark generator; the ignition chamber being adapted to communicate with a main engine combustion chamber via at least one pre-chamber port; wherein the ignition chamber communicates for removal therefrom of exhaust gas residuals. The exhaust gas residuals are preferably removed to a distinct storage chamber, more preferably via a transfer port.
摘要:
Auxiliary chamber type internal combustion engine has a main combustion chamber and an auxiliary chamber having an injection port through which the main combustion chamber communicates. The auxiliary chamber has a passage sectional area which is smoothly decreased toward the injection port. Further, the engine has a fuel injector injecting a fuel into the auxiliary chamber; an ignition plug igniting the fuel in the auxiliary chamber; and a swirl generating portion swirling a gas in the auxiliary chamber. The swirl generating portion swirls only the gas flowing into the auxiliary chamber from the main combustion chamber.
摘要:
The present disclosure relates to assemblies for engines such as pre-combustion chamber assemblies for spark ignition engines. In one example, a pre-combustion chamber assembly includes an ignition chamber adapted to contain at least one electrode of a spark generator. The ignition chamber being adapted to communicate with a main engine combustion chamber via a plurality of pre-chamber ports. The ignition chamber communicates for removal therefrom of exhaust gas residuals to a distinct storage chamber via at least one transfer port. The ignition chamber includes a single substantially cylindrical entrance channel leading from said pre-chamber ports in a direction towards an ignition region of the ignition chamber. The ignition region having a larger cross-section than the entrance channel.
摘要:
A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
摘要:
Auxiliary chamber type internal combustion engine has a main combustion chamber and an auxiliary chamber having an injection port through which the main combustion chamber communicates. The auxiliary chamber has a passage sectional area which is smoothly decreased toward the injection port. Further, the engine has a fuel injector injecting a fuel into the auxiliary chamber; an ignition plug igniting the fuel in the auxiliary chamber; and a swirl generating portion swirling a gas in the auxiliary chamber. The swirl generating portion swirls only the gas flowing into the auxiliary chamber from the main combustion chamber.
摘要:
A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
摘要:
A prechamber spark plug may have a prechamber having a pre-determined aspect ratio and hole pattern to achieve particular combustion performance characteristics. The aspect ratio and hole pattern may induce a rotational flow of fuel-air in-filling streams inside the prechamber volume. The rotational flow of the fuel-air mixture may include both radial flow and axial flow characteristics based on the aspect ratio and hole pattern. Axial flow characteristics can include a first axial direction proximate the periphery of the rotational flow and a counter second axial direction approaching the center of the rotational flow. The radial and axial flow characteristics may further include radial air-fuel ratio stratification and/or axial air-fuel ratio stratification. The rotational flow, the radial flow and the axial flow may be adjusted by alteration of the aspect ratio and hole pattern to achieve particular combustion performance characteristics in relation to a wide variety of spark gap geometries.
摘要:
A mixture compressing external auto-ignited four-stroke cycle internal combustion engine, with charge stratification, has the largest portion of the fuel charge supplied to the main combustion chamber as a lean fuel mixture through at least one inlet valve. The remaining portion of the charge is supplied to an auxiliary combustion chamber as a rich fuel mixture through at least one additional mixture inlet. Also provided is an ignition chamber and an auxiliary combustion chamber connected thereto through at least one opening. The opening is small compared to the size of the ignition chamber in which a sparkplug is arranged. The volume of the ignition chamber is dimensioned in relation to the volume of the auxiliary combustion chamber so that during ignition of the rich fuel mixture a stable flame zone is formed.
摘要:
Reduction of NO.sub.x emissions from a four-cycle stratified charge internal combustion piston engine is accomplished by (a) spark ignition of a rich mixture in a first chamber containing residual exhaust gas, followed by (b) torch ignition of rich mixture in a second chamber under turbulent conditions, causing (c) torch ignition of a stratified charge in a lean mixture in the main combustion chamber. The result is a reduction in peak temperature in the combustion process, with consequent reduction in NO.sub.x emissions in the engine exhaust gases. Exhaust gas is not recirculated. Said first chamber, which contains residual gas from the previous combustion cycle, contains the spark gap between spark plug electrodes and the spark gap is located near a restricted connection between the first and second chambers and remote from a closed end of the first chamber. Means are provided for changing the volume of said first chamber while the engine is operating, in accordance with variations in load on the engine.
摘要:
A three-valve spark-ignition internal combustion piston engine has an auxiliary combustion chamber connected to each main combustion chamber through a torch nozzle. The intake valve for the auxiliary chamber is provided with a skirt for varying the effective size of the torch nozzle under controlled turning movement of the intake valve stem. The effective size of a restricted opening which connects the auxiliary chamber to an adjacent chamber containing the spark plug electrodes is also changed by means of a skirt on the auxiliary intake valve.