摘要:
A drive assembly mounted on a pivot arm for a cover system having a cover supported on an axle for the cover to be wound and unwound, the drive assembly including a housing, a drive motor including a hypoid pinion gear in meshed engagement with a hypoid ring gear, a transfer gear engaged to the hypoid ring gear for rotation therewith, an output gear in meshed engagement with the transfer gear, and an output shaft engaged to the output gear for rotation therewith, the output shaft engaged to the axle to transmit rotation from the drive assembly to the axle. The hypoid ring gear, the transfer gear and the output gear are sized and arranged so that the output gear overlaps the hypoid ring gear, and so that the hypoid pinion gear and the output gear are on the same side of the hypoid ring gear and laterally overlap each other. The hypoid ring gear, the transfer gear and the output gear rotate about mutually parallel axes, and the housing has a height in a direction parallel to the parallel axes of three inches or less.
摘要:
A differential includes a differential case; a side gear; a pinion configured for meshing engagement with the side gear; and a pinion housing configured to support the pinion. The pinion housing includes a first face; a second face opposing the first face; a first projection located on the first face; and a second projection located on the second face. The pinion housing also includes an aperture or hole extending radially inwardly from an outer radial surface of the generally annular ring; and a channel extending from the first face to the second face, wherein the channel is substantially radially aligned with the aperture or hole. In embodiments, the pinion housing includes one or more transfer formations configured to transfer torque from the differential case, and the pinion housing is configured to permit movement in an axial direction between a pair of side gears.
摘要:
A differential gear assembly, in particular for a motor vehicle, includes a gearwheel, driven by a pinion and arranged on a differential case that is rotatably mounted in a gearbox case via rolling-contact bearings on both sides. Planet gears are supported in the differential case on at least one driving pin and meshing with axis-parallel output gears on output half-shafts. The gearwheel is attached to the differential case without form fit in circumferential direction and has recesses into which the at least one driving pin formfittingly projects in circumferential direction.
摘要:
A differential, having at least one drive gear, at least two axle gears, at least one compensating gear, and at least one connector element, in which the connector element is subjected to at least one first torque from the drive gear and transmits at least one second torque to at least one of the at least two axle gears. The drive gear is constructed in such a manner that the drive gear at least partially encloses at least one interior space, and the connector element is arranged at least partially inside the interior space enclosed at least partially by the drive gear.
摘要:
The invention relates to a torque-splitting differential (1) for a motor vehicle, comprising two coaxially aligned lateral differential gears (10, 10′) that are spaced apart in the axial direction, each lateral differential gear (10, 10′) being mounted to be rotatable about a common axis of rotation D. The differential has at least two compensating gears (20), each of which meshes with both lateral differential gears (10, 10′). A compensating gear support (30), on which the compensating gears (20) are rotatably mounted and which is arranged between the lateral differential gears (10, 10′), is mounted to be rotatable about the axis of rotation D. The lateral differential gears (10, 10′) are designed as crown gears, of which the teeth have different diameters. Furthermore, the compensating gears (20) are spur-cut gears while the compensating gear support (30) rotatably rests against the lateral differential gears (10, 10′).
摘要:
A slide-proof structure between an outer wall of a planet gear and a planet frame of a differential mechanism comprises a left half shaft engaged to a left gear; a right half shaft engaged to a right gear; at least one planet gear installed between the left gear and the right gear; a planet frame installed at outer sides of the left half shaft and the right half shaft; the planet frame being formed by two pieces which includes a left sub-frame and a right sub-frame; and a slide proof device installed at an upper outer wall or a lower outer wall of the planet gear and located between the left sub-frame and the right sub-frame of the planet frame. Furthermore, an elastic body is installed at an outer side of the slide proof device; and the elastic body resisting against the slide proof device.
摘要:
A differential gear system with a three-step control mechanism uses the axial motion of a single member to achieve three functions of ON, OFF and LOCK. The differential gear system has a locking mechanism installed in the planetary gear carrier between two planetary gears thereof. Extra space for the locking mechanism is not necessary. It can be applied to differential gear systems with spiral bevel gears and with regular gears. The locking mechanism can be mounted between two planetary gears of the planetary gear carrier or on the shaft of the planetary gear corresponding to the other planetary gear connected with the clutch sleeve. Accordingly, the differential gear system with a three-step control mechanism comprises a left shaft, a right shaft and a planetary gear carrier between the left shaft and the right shaft. The left shaft and the right shaft are respectively one-piece axles provided with end connecting sections.
摘要:
A differential gear system with a three-step control mechanism uses the axial motion of a single member to achieve three functions of ON, OFF and LOCK. The differential gear system has a locking mechanism installed in the planetary gear carrier between two planetary gears thereof. Extra space for the locking mechanism is not necessary. It can be applied to differential gear systems with spiral bevel gears and with regular gears. The locking mechanism can be mounted between two planetary gears of the planetary gear carrier or on the shaft of the planetary gear corresponding to the other planetary gear connected with the clutch sleeve. Accordingly, the differential gear system with a three-step control mechanism comprises a left shaft, a right shaft and a planetary gear carrier between the left shaft and the right shaft. The left shaft and the right shaft are respectively one-piece axles provided with end connecting sections.
摘要:
A double differential assembly having a first differential drive (3) with a differential carrier (5) drivable around an axis of rotation (A), a plurality of first differential gears (6) rotatably supported therein, as well as two output gears (7, 8) which are coaxially arranged relative to the axis of rotation (A) and engage the first differential gears (6). It also includes a second differential drive (4) with a cage element (22) which is firmly connected to one of the output gears (8) of the first differential drive (3) and is drivable thereby around the axis of rotation (A), a plurality of second differential gears (25) which are rotatably held in the cage element (22), and two sideshaft gears (26, 27) which are arranged coaxially relative to the axis of rotation (A) and engage the second differential gears (25). At least one of the two differential drives (3, 4) is a crown gear differential.
摘要:
A differential gear system employs stably-oriented orbiting gears to convey drive torque from a drive shaft differentially to a first wheel shaft and to a second wheel shaft. A portion of the drive torque is conveyed to the first wheel shaft, and the remainder of the drive torque is conveyed to the second wheel shaft. The differential gear system uses a first stably-oriented orbiting inner gear to convey torque to the first wheel shaft and a second stably-oriented orbiting inner gear to convey torque to a second wheel shaft. Dual-axis couplings allow the stably-oriented orbiting inner gears to move in a translational, orbital motion, but prevent the inner gears from rotating. Each of the stably-oriented orbiting inner gears has outer teeth, whose surfaces are substantially planar. The outer teeth of the stably-oriented orbiting inner gears mesh with flat-surfaced inner teeth of hollow gears.