Abstract:
A hydraulic control unit that delivers hydraulic fluid to a limited slip differential includes a hydraulic control unit housing, a sump and a motor. The hydraulic control unit housing has an accumulator housing portion that houses a biasing assembly and a piston. The sump is defined in the hydraulic control unit housing and at least partially occupies a common space with the accumulator housing portion. The motor is configured to pump fluid into an accumulator chamber of the accumulator housing portion. The fluid pumped into the accumulator housing portion at least partially collapses the biasing assembly and introduces a pre-charge into the hydraulic control unit. The biasing assembly is configured to expand and urge the piston in a first direction resulting in fluid being communicated from the hydraulic control unit and into the limited slip differential.
Abstract:
A limited slip differential assembly can include a sleeve, a support shaft, and a clutch assembly. The sleeve can have a sleeve aperture centered on and extending along an axis. The sleeve can also have a first set of splines projecting inwardly from the sleeve aperture. The sleeve can be operable to engage an axle through the first set of splines. The support shaft can have an outer surface, a support shaft aperture centered on and extending along the axis, and a second set of splines projecting from the outer surface. The support shaft can be adjacent to the sleeve along the axis and be operable to encircle and freely rotate relative to the axle. The clutch assembly can be operable to selectively interlock the sleeve and the support shaft.
Abstract:
A differential includes a differential case; a side gear; a pinion configured for meshing engagement with the side gear; and a pinion housing configured to support the pinion. The pinion housing includes a first face; a second face opposing the first face; a first projection located on the first face; and a second projection located on the second face. The pinion housing also includes an aperture or hole extending radially inwardly from an outer radial surface of the generally annular ring; and a channel extending from the first face to the second face, wherein the channel is substantially radially aligned with the aperture or hole. In embodiments, the pinion housing includes one or more transfer formations configured to transfer torque from the differential case, and the pinion housing is configured to permit movement in an axial direction between a pair of side gears.
Abstract:
An electronically actuated locking differential for an automotive vehicle includes a gear case, a pair of side gears disposed within the gear case and operatively adapted for rotation with a corresponding pair of axle half shafts, and a lock plate disposed within the gear case and operably associated with one of the side gears and being movable axially relative to the one of the side gears. The electronically actuated locking differential also includes a return spring disposed within the gear case and cooperating with the lock plate to bias the lock plate axially away from one of the side gears and an electronic actuator cooperating with the lock plate, the electronic actuator having a non-rotating stator disposed about a portion of the gear case, an electromagnetic coil associated with the stator, and a non-rotating armature coupled to the lock plate and being axially movable relative to the stator.
Abstract:
A limited slip differential assembly includes a planetary gear assembly, a differential case, a differential gear assembly and a hydraulic clutch assembly. The differential case is coupled for rotation with a portion of the planetary gear assembly. The differential gear assembly is arranged within the differential case and includes a first side gear and a second side gear for coupling with first and second drive wheels of a vehicle, respectively. The hydraulic clutch assembly includes a clutch pack and a clutch actuator. Pressurized hydraulic fluid from a transmission pump is selectively provided to the clutch pack to actuate the clutch pack between an open configuration, in which the side gears rotate independently, and a fully closed configuration, in which the side gears rotate together such that the first and second drive wheels rotate at a same speed.
Abstract:
A differential gear mechanism constructed in accordance to one example of the present disclosure can include a differential casing having a first differential case portion that defines a first output shaft opening and a second differential case portion that defines a second output shaft opening. The first differential case portion can include an annular pocket formed thereon and defined by an outer circumferential wall, an inner circumferential wall and an end wall. A piston can be slidably disposed in the annular pocket and configured to actuate a clutch assembly. A first and a second side gear can be rotatably mounted within the differential casing. The first and second side gears can be co-axially aligned along an axis of rotation of the differential casing.