Abstract:
In general, a conductor removal system 1 comprises a conductor sectioning tower which can be used to automate lifting and landing of various conductor sections. In most embodiments, the conductor sectioning tower can selectively and controllably go between an initially compact position to a raised, substantially vertical position with respect to the conductor removal system's transport frame. Conductors are cut creating a severed conductor section which can be positioned onto a conductor landing cart for further removal processing.
Abstract:
In one aspect, the present invention relates to a method for displacing fluid from a pipe. The method includes engaging a fluid-displacement system with the pipe. A displacement agent is pumped into the pipe via the fluid-displacement system. Fluid present within the pipe is displaced by the displacement agent. The pipe is manipulated in a desired manner.
Abstract:
A method of abandoning a pipeline from an offshore vessel, wherein the method includes the steps of: providing a tubular member between a winch apparatus and the end of the pipeline being abandoned, the tubular member being received in a tensioning apparatus, and lowering the pipeline with the winch apparatus and the tensioning apparatus, the tensional load of the pipeline being held by the tensioning apparatus and the winch apparatus at the same time.
Abstract:
A rigid-to-flexible connector (RFC) is provided on the rigid pipe section instead of a pipeline end termination (PLET), and the pipe end having the RFC is raised to the surface of the sea, while leaving a portion of the rigid pipe section on the seabed. The RFC is then connected to one end of the flexible pipe section, and the latter lowered to the seabed, with the raised, end of the rigid pipe section attached, to return the rigid pipe section to the seabed. Since the RFC on the rigid pipe section is connected to the flexible pipe section at the surface of the sea, the RFC can have a simpler, lighter, technical design, resulting in significant cost, manufacturing time and quality control time savings.
Abstract:
A rigid-to-flexible connector (RFC) is provided on the rigid pipe section instead of a pipeline end termination (PLET), and the pipe end having the RFC is raised to the surface of the sea, while leaving a portion of the rigid pipe section on the seabed. The RFC is then connected to one end of the flexible pipe section, and the latter lowered to the seabed, with the raised, end of the rigid pipe section attached, to return the rigid pipe section to the seabed. Since the RFC on the rigid pipe section is connected to the flexible pipe section at the surface of the sea, the RFC can have a simpler, lighter, technical design, resulting in significant cost, manufacturing time and quality control time savings.
Abstract:
An elongate sling section is disclosed. The elongate sling is cooperable with like sling sections to form a sling for use in abandonment or recovery of a pipeline. The sling section includes end-pieces at five opposite ends and complementary connector formations associated with each respective end-piece. Each connector formation is cooperable, in use when forming a sling, with a complementary connector formation of a neighbouring sling section in the sling. The sling section further includes a tensile load-bearing sling element extending between the end-pieces and a sleeve around the sling element.
Abstract:
A diamond wire saw and method provides a frame that includes a clamp that attaches to a target (e.g. piling, beam, tubular), an elongated toothed rack extending away from the mount and target, and a moving portion that carries the diamond wire and motor drives that advance the moving portion toward the target and along the toothed rack while driving the wire around roller guides.
Abstract:
A method of salvaging a pipeline in a marine environment is disclosed. The method provides a frame having a perimeter that surrounds a pair of opposed cutting blades, the frame having a gate that enables the frame to be selectively placed around or removed from a section of pipeline to be cut. As part of the method, the frame is placed on a pipeline by first opening the gate and then closing the gate once the pipeline is in an opening that is at the center of the frame. The center opening is generally rectangular in shape once the gate is closed. The cutter blades are moved toward one another, preferably with one blade being the moving blade and the other being a fixed blade. The cutter blades move toward one another until they overlap. At the time that they overlap, the cutter blades are prevented from deflecting in a direction normal to the direction of travel by a pair of guide rails that trap the moving blade in between the fixed blade and the guide rails. The pipeline to be cut is automatically centered within respective v-notched shaped blades prior to being severed as the blades advance relative to one another.
Abstract:
Method for cutting and removing underwater pipelines, comprising the following steps: a) determining the position of the underwater pipeline to be removed; b) positioning, on the said line, guiding means for positioning cutting means and means for recovering the cut pipe sections, said guiding means being able to be repositioned along said line and being stably connected to a boat intended to collect the recovered sections; c) guided positioning of the cutting means and guided positioning of the recovery means; d) cutting of the pipe section of predetermined length and subsequent removal of said section by means of said recovery means; e) transfer of the pipe section recovered by said recovery means to said boat; f) repositioning of the guiding means along the remaining line portion to be removed and repetition of the preceding steps c) to e) until the underwater pipeline has been completely removed; and an apparatus for implementing this method.
Abstract:
A method of abandoning a pipeline (2) being laid by a vessel having an A/R system, wherein a sealine (2, 11, 13) is initially held by a pipe laying and tensioning arrangement. The method includes a step of reducing tension at sea level of the sealine (2, 11, 13), by connecting one or more buoyant members (13) to the end of the pipeline (2). The members (13) are then lowered into the sea, using a line (16). At least one member (13) is connected to the pipeline (2) through a connection (12) which allows pivoting of the member (13) so that the end of the member (13) at the end of the pipeline (2) projects upwardly from the seabed (3).