摘要:
Systems and/or methods can provide for solid-state refrigeration below 1 degree Kelvin. By applying a simple sequence of ac electrical signals to a gated semiconductor device, electrons are cooled in a refrigeration sequence that, in turn, provides cooling directly to the heat load of interest. Electrons in a single subband of a semiconductor quantum well are expanded adiabatically into several subbands, resulting in a temperature drop. Repeated application of this cycle at MHz-GHz frequencies results in a significant cooling power. The anticipated cooling powers can compete with today's standard cryogenic system, the dilution refrigerator, which represents the market standard for achieving cryogenic temperatures.
摘要:
The present invention comprises a tunneling device in which the collector electrode is modified so that tunneling of higher energy electrons from the emitter electrode to the collector electrode is enhanced. In one embodiment, the collector electrode is contacted with an insulator layer, preferably aluminum or silicon nitride, disposed between the collector and emitter electrodes. The present invention additionally comprises a method for enhancing tunneling of higher energy electrons from an emitter electrode to a collector electrode, the method comprising the step of contacting the collector electrode with an insulator, preferably aluminum or silicon nitride, and placing the insulator between the collector electrode and the emitter electrode.
摘要:
The dual heat to cooling converter is comprised of one device which converts thermal energy to electricity and the second device which converts electrical energy to cooling. The emf generating device may be of the thermoelectric type and the cooling device of the thermionic type and conversely, the emf generating device may be of the thermionic type and the cooling device may be of the thermoelectric type. The unwanted heat generated during the conversion process is removed by the adiabatic plane, located between the emf generator and the cooling generator. The emf generator and the cooling generator and thermally isolated and electrically connected.
摘要:
There is provided a small-size electronic heat pump device which is low in power consumption and which secures a vacuum gap without use of an additional circuit. The electronic heat pump device includes an emitter 1 and a collector 2. An electrically and thermally insulative spacer section 5 for keeping a space, i.e. vacuum gap G between an emitter electrode 11 and a collector electrode 21 constant is integrally formed in a semiconductor substrate 20 of the collector 2, which makes it possible to maintain the vacuum gap to be a specified space while a back flow of heat is prevented in a simple structure with a reduced number of component parts.
摘要:
A method of manufacturing a thermal transfer device including providing first and second thermally conductive substrates that are substantially atomically flat, providing a patterned electrical barrier having a plurality of closed shapes on the first thermally conductive substrate and providing a nanotube catalyst material on the first thermally conductive substrate in a nanotube growth area oriented within each of the plurality of closed shapes of the patterned electrical barrier. The method also includes orienting the second thermally conductive substrate opposite the first thermally conductive substrate such that the patterned electrical barrier is disposed between the first and second thermally conductive substrates and providing a precursor gas proximate the nanotube catalyst material to facilitate growth of nanotubes in the nanotube growth areas from the first thermally conductive substrate toward, and limited by, the second thermally conductive substrate. In this thermal transfer device, introduction of current flow between the first and second thermally conductive substrates enables heat transfer between the first and second thermally conductive substrates via a flow of electrons between the first and second thermally conductive substrates.
摘要:
The present invention comprises a tunneling device in which the collector electrode is modified so that tunneling of higher energy electrons from the emitter electrode to the collector electrode is enhanced. In one embodiment, the collector electrode is contacted with an insulator layer, preferably aluminum oxide, disposed between the collector and emitter electrodes. The present invention additionally comprises a method for enhancing tunneling of higher energy electrons from an emitter electrode to a collector electrode, the method comprising the step of contacting the collector electrode with an insulator, preferably aluminum oxide, and placing the insulator between the collector electrode and the emitter electrode.
摘要:
A thermal transfer device having a first substrate layer, a second substrate layer and first and second electrodes disposed between the first substrate layer and the second substrate layer. The thermal transfer device also includes a release layer disposed between the first electrode and the second electrode and an actuator disposed adjacent the first and second electrodes. The actuator is adapted to separate the first and second electrodes from the release layer to open a thermotunneling gap between the first and second electrodes, and wherein the actuator is adapted to actively control the thermotunneling gap.
摘要:
An electronic heat pump device has an emitter and a collector, stems supporting these components, a spacing retention member for keeping a spacing between the stems constant, and a sealing member for maintaining a vacuum between the stems. The emitter has a first semiconductor substrate and an emitter electrode, while the collector has a second semiconductor substrate and a collector electrode. The emitter electrode and the collector electrode are disposed so as to be opposed to each other with a space interposed therebetween. At least one of the first and second semiconductor substrates is integrally formed with electrically and thermally insulative spacers that keep the space between the emitter electrode and the collector electrode constant.
摘要:
A power circuitry with a thermionic cooling system is provided. The system includes a voltage regulator and a heat rectifying device to cool the voltage regulator. The heat rectifying device includes a heat collector and a heat barrier, formed between the voltage regulator and the heat collector. An auxiliary voltage generator enables the electrons of the voltage regulator to tunnel onto the heat collector through the heat barrier. The voltage regulator may include a shared substrate and power transistors, generating a regulated voltage. In some embodiments the controller keeps a temperature in a preselected range by controlling the power transistors, the auxiliary voltage generator, and a fan. In some embodiments a load is integrated together with the thermionic cooling system so that the load itself can be cooled by the heat rectifying device.
摘要:
The invention relates to a novel cooling system (100) in which waste heat to be dissipated is first absorbed by an electron emission layer (15). The heat induces a discharge of electrons (13) from the surface of the electron emission layer, whereby the electrons are drawn off by a suction electrode (10) which is located on a positive potential located opposite the emission layer (15). The thermal energy carried along by the electrons (13) induce a heat transfer from the electron emission layer (15) to the suction electrode (10). The intensity of the electron flow can be controlled by the bias voltage of a grid (12) which is arranged between the electron emission layer (15) and the suction electrode (10). The surface of the electron emission layer (15) is preferably composed of alkaline earth metals such as barium or cesium.