Abstract:
A method and system for coordination of a plurality of munitions in a Global Positioning System (GPS) denied attack of a plurality of ground targets. A relative position of each munition is determined relative to the other munitions in the salvo and a distance range is determined of each munition relative to the other munitions in the salvo. A constellation formation is determined for the plurality of munitions in the salvo relative to a target seeker basket such that each munition in the constellation formation is navigated to its respective target seeker basket, whereby a change in navigation for each munition is caused when necessary such that each munition arrives at its determined seeker basket at an approximate same time.
Abstract:
According to an aspect of the invention, there is provided a control system for controlling a projectile, the control system comprising: a plurality of transmitters, wherein each transmitter of the plurality of transmitters is arranged to transmit an electromagnetic wave from a transmission position; a receiver associated with the projectile, the receiver being arranged to receive a plurality of electromagnetic waves transmitted from the plurality of transmitters; a controller associated with the projectile, the controller being arranged to: determine at least one of a position, a velocity or an acceleration of the projectile from transmission positions of the plurality of transmitters and Doppler measurements derived from the received plurality of electromagnetic waves; and generate a control signal for performing an action with the projectile depending on the determined at least one of position, velocity or acceleration of the projectile.
Abstract:
A system includes and maintains a machine learning algorithm. The machine learning algorithm is trained to identify non-targets in an environment. The system receives an image of the environment, and identifies the non-targets in the image using the trained machine learning algorithm. The system then generates a firing cut out map for overlaying on the image of the environment based on the identified non-targets in the image of the environment.
Abstract:
The present invention relates to a computer-implemented method for targeting missiles, to a corresponding computer program, to a corresponding computer-readable medium and to a corresponding data processing device, as well as to a missile.
Abstract:
Embodiments include active protection systems and methods for an aerial platform. An onboard system includes radar modules, detects aerial vehicles within a threat range of the aerial platform, and determines if any of the aerial vehicles are an aerial threat. The onboard system also determines an intercept vector to the aerial threat, communicates the intercept vector to an eject vehicle, and causes the eject vehicle to be ejected from the aerial platform to intercept the aerial threat. The eject vehicle includes alignment thrusters to rotate a longitudinal axis of the eject vehicle to substantially align with the intercept vector, a rocket motor to accelerate the eject vehicle along an intercept vector, divert thrusters to divert the eject vehicle in a direction substantially perpendicular to the intercept vector, and attitude control thrusters to make adjustments to the attitude of the eject vehicle.
Abstract:
Embodiments include active protection systems and methods for an aerial platform. An onboard system includes radar modules, detects aerial vehicles within a threat range of the aerial platform, and determines if any of the aerial vehicles are an aerial threat. The onboard system also determines an intercept vector to the aerial threat, communicates the intercept vector to an eject vehicle, and causes the eject vehicle to be ejected from the aerial platform to intercept the aerial threat. The eject vehicle includes alignment thrusters to rotate a longitudinal axis of the eject vehicle to substantially align with the intercept vector, a rocket motor to accelerate the eject vehicle along an intercept vector, divert thrusters to divert the eject vehicle in a direction substantially perpendicular to the intercept vector, and attitude control thrusters to make adjustments to the attitude of the eject vehicle.
Abstract:
A method for acquiring the coordinates of a trigger point of a projectile above a field part on which a target is located, including: emission of at least one laser pulse having a pre-determined duration and directed towards the target; reception of the images reflected with a receiver equipped for the synchronous visualization of the laser pulses originating from a piece of observation of the field part; recovery of the coordinates of a desired trigger point when the operator has chosen a location after the piece of observation was moved. The invention also relates to a fire-control system using such a method.
Abstract:
A system for monitoring guiding and controlling an unmanned, unteathered flight vehicle, generally assumed to be moving through the atmosphere of the earth at a high rate of speed. The system comprised an on-board positional receiver and processing means coupled to a transceiver capable of combining such positional information with additional data relative to the health and status of the flight vehicle and transmitting the same to a ground station of compatible and simplified design. A preferred positional determination means is to utilize a form for GPS signal thereby affording one the opportunity to include appropriate processing software or additional componentry if necessary for base station purposes and thereby provide a relatively inexpensive system having a low probability of detection for intercept that simultaneously yields vastly improved operating performance characteristics over the mere translation of received GPS signals to down-link or to remote stations as known in the prior art. The system of the present invention may be utilized to provide auto-registration correction, range-only correction, or a combination of auto-registration and range correction.
Abstract:
The invention describes a target approach procedure for a guided, mobile missile for use against ground targets, particularly bridges, roads, rail junctions, hangars, shelters, command posts, harbor installations as well as ships, in which the missile is released at a great distance from the target and flies automatically to the target, with guidance by parallel lines that characterize ground structures, and hits it from the most favorable approach direction.
Abstract:
An ignition delay timing system, and corresponding method, for adjusting the position of an in-flight missile during its boost phase along its flight path according to a pre-launch flight path solution. The ignition delay system of the present invention is applied by navigating missile position between burnout of a given booster stage and ignition of a subsequent booster stage, and modifying ignition time of the subsequent boost stage so that the missile position along its flight path follows a pre-launch solution after all booster stages are burned. Nominal missile coast phases, which occur between burnout of one booster stage and ignition of subsequent booster stage are either increased or decreased for earlier or later booster stage ignitions to maintain the missile position along its flight path in accordance with the pre-launch solution.