摘要:
A fiber optic gyroscope including an optical circulator in the path of said first and second beams for providing polarized first and second beams of identical polarization. A phase modulator couples the first and second beams to the first and second end respectively of the fiber loop, and couples for receiving the return first and second beams from the second and first ends respectively of the fiber loop. First and second photodiodes are coupled to the optical circulator for receiving the optical signal from the first and second return beams.
摘要:
A digital controller produces control data signals for application to each of three fiber optic rotation sensors in a triaxial rotation sensing system. The digital controller also produces strobe signals corresponding to each fiber optic rotation sensor. The digital controller sequentially provides first, second and third strobe signals that activate the analog converters sequentially to apply modulating signals to the three fiber optic rotation sensors. The system further includes apparatus for providing modulation cycles to keep all three fiber optic rotation sensors active simultaneously. Sampling apparatus samples each sensor sequentially during a .tau. period and feedback modulation control data signals are applied sequentially to the three sensors during the .tau. period for each sensor when the sensor was sampled. Feedback modulation control data signals are isolated from each fiber optic rotation sensor except for the .tau. periods in which it is sampled.
摘要:
A three-axis fiber-optic interferometer as applicable in particular to a gyrometer comprises three optical fibers forming rings disposed along three different axes. The three optical fibers are fed by a light beam emitted by a single source. A single interference photodetector receives the light beam after transit through the different fibers. Coupling devices couple the second fiber to the first fiber and the third fiber to the second fiber.
摘要:
An interferometric system with multi-axis optical fiber and a method for processing an interferometric signal in such a system, the multi-axis interferometric system includes a light source (1); a plurality of N optical-fiber coils (11, 12), a first optical separation element (3) capable of splitting the source beam (100) into a first split beam (140) and a second split beam (240); shared phase-modulation element (4); a photodetector (2) and a signal-processing system (800). The N optical-fiber coils (11, 12) are connected in parallel, the coils having respective transit times T1, T2, . . . TN that all differ from one another, and the signal-processing system (800) is capable of processing the interferometric signal (720) detected by the shared photodetector (2) as a function of the respective transit times in the various coils.
摘要:
A gyroscope having three fiber optic loops for sensing rates of rotation in three axes orthogonal to one another. The gyroscope has one or two detectors and one source that is shared among the three fiber optic sensing loop subsystems with a special multi-coupler configuration. Also, portions of the rotation rate signal processing electronics, whether an open or closed loop configuration, are shared among the three sensing loops. The gyroscope may be a single mode optical fiber depolarized configuration or a polarization maintaining optical fiber configuration.
摘要:
To measure absolute rotations in several directions in space with the aid of interferometers, one interferometer is required for each direction in space. According to the invention, it is proposed to supply a device consisting of several interferometers from a common light source and to switch only the phase modulation impressed on the light rather than the light paths, using time-division multiplexing. The output signals from the interferometers are detected and evaluated with a single detector and evaluating unit.
摘要:
Single and multiple axis fiber optic gyroscope systems employ orthogonal sequences to minimize the effects of both intra and inter-axis crosstalk. Sequences for driving electro-optic modulators are derived by examination of underlying primary and secondary demodulation sequences. Such underlying sequences are examined for orthogonality in accordance with a number of selection rules. When the selection rules are satisfied, the corresponding modulation sequences for driving the gyro(s) are identified and applied. By selecting the modulation waveforms in accordance with orthogonality criteria, one is assured of mean-zero bias errors within a predetermined number of loop transit times.
摘要:
Apparatus and methods are disclosed for the time division multiplexing of fiberoptic gyros to reduce the amount of control electronics required. Each of a plurality of gyros is sampled at a rate of n.tau., where .tau. is the gyro optical transit time and n is an integer. The sampled signal is fed to a digital signal processor (DSP) for processing and used to form a rate feedback signal. The rate feedback signal is converted to analog form to drive the phase modulator drive of each gyro. In preferred embodiments the multiplexed sample rate is at least ten times the bandwidth of the gyros. The rate data can be filtered and output by the DSP and the DSP can integrate the rate data to give angle data. The use of precision analog circuits is avoided.
摘要:
A multiple nested interferometric fiber optic gyroscope system having varying functions may include a first fiber optic coil, a second fiber optic coil which is smaller than the first fiber optical coil and nested within and transversely to the first fiber optic coil, and a third fiber optic coil which is smaller than the second fiber optical coil and nested within and transversely to the second fiber optic coil.
摘要:
An interferometric fiber-optic gyro system includes a light source and a plurality of optical fiber rings employed to measure angular displacement along three axes. Optical circuit elements interposed between the source and the rings include an optical switch for periodically applying the optical signal to each of the rings individually along three separate optical transmission paths. Included in each of the optical transmission paths is a modal filter, including a polarizer, and a beam splitter which provides two separate beams to the optical ring for counter-propagation through the ring. Compensating birefringent devices are added in the optical circuits to compensate for a residual birefringence introduced by the various optical elements in the circuits. The characteristics of the compensating devices consist of predetermined lengths of polarization preserving, single-mode optical fiber. The birefringence of each of the optical devices is characterized in terms of a total number of beat lengths. A plus or minus sign is assigned to the value of the beat lengths, depending upon the optical axis of the optical device being measured. The birefringent compensating optical fiber is selected so as to cancel the net birefringent effect of the other optical elements in the optical circuit expressed in beat length. The compensating fiber may be distributed in the optical circuit subject to the requirement that each section of optical fiber has an minimum length to assure single-mode transmission.