摘要:
A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The lasers are aimed at a topographical target along a system axis and the beams successively interrupted by a chopper wheel.The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise to substantially improve the signal-to-noise ratio of the detector. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.
摘要:
Methods and systems for obtaining a target fluid map of a survey area using a differential absorption LIDAR (DIAL) system are provided. Pulse bursts are transmitted toward the survey area, where each pulse burst includes an off-line pulse and at least one on-line pulse. Pulse bursts, each being associated with a measurement point, are received from the survey area. A concentration path length (CPL) corresponding to a respective on-line pulse, a spatial location associated with the CPL, and an error associated with the CPL are determined for each measurement point. The CPL for each measurement point is arranged within the survey area to form the target fluid map.
摘要:
A coherent laser radar (lidar) device is described. The device has a transmitter portion that comprises a single wavelength laser source, a conversion means (such as an electro-optic modulator) for producing a combined light beam that comprises at least two component light beams of discrete wavelength from the output of said single wavelength laser source, and transmit optics to direct the combined light beam to a remote target. Each component light beam of the combined light beam traverses the same optical path from the single wavelength laser source to the transmit optics. The device is used to make differential absorption measurements.
摘要:
Gases such as pollutants are discerned in a sample, preferably using a laser to emit an infrared light beam along a sight path for illuminating the gases. The beam is directed along the sight path and collects light from the gases. An optical tunable filter selects a particular optical wavelength or band, and the filtered wavelength is focused on a detector coupled to an analyzer. The analyzer can include a processor that can pulse the laser or coordinate collection of data from sample gases and from a reference cell containing known gases, e.g., using an optical chopper wheel. The processor analyzes the light levels as a function of wavelength to discriminate for the presence of selected gases by determining a characteristic pattern of light absorption and light emission by the gases. The tunable filter has an acousto-optical crystal of Tl.sub.3 AsSe.sub.3, in which an RF acoustic wave is generated for varying diffraction of light by the filter, thereby selecting a wavelength. A nonlinear output crystal can in inserted controllably to selectively generate harmonics for increasing wavelength coverage, and can also be Tl.sub.3 AsSe.sub.3. A broad band infrared illumination source can be used. When the infrared excitation beam is off, the filter acts on infrared emissions of the gases. Sensitivity to narrow emission lines is increased by modulating the RF drive to the tunable filter, producing derivatives of the spectra.
摘要:
A remote sensing system includes a transmitter for generating multiple beams of light; a combiner for combining the multiple beams of light and directing the combined multiple beams toward a target of multiple gases; and a receiver for receiving the combined multiple beams of light from the target. The first and second transmitted beams of light include, respectively, first and second sets of multiple distinct wavelengths that are simultaneously transmitted toward the target. The receiver receives the multiple distinct wavelengths, and simultaneously detects an intensity of each received wavelength. The first set of multiple distinct wavelengths is selected based on absorption characteristics of a first species of gas, and the second set of multiple distinct wavelengths is selected based on absorption characteristics of a second species of gas. The transmitter includes first and second mode-locked based lasers for generating, respectively, the first and second sets of distinct multiple wavelengths. The receiver includes first and second pixel arrays for detecting, respectively, the first and second sets of distinct multiple wavelengths.
摘要:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate light, the wavelength of said light source being tuned with the spectral signature of methane, whereby the light can be directed onto a measuring field. The detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve the remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stable structure. According to the invention, the light source generates light with a wavelength at which methane is absorbed, wherein the wavelength lies between 3200 nm and 3300 nm, and the light source has an optical parametric oscillator with injection seeding, the oscillator being associated with a pump laser.
摘要:
A coherent laser radar (lidar) device is described. The device has a transmitter portion that comprises a single wavelength laser source, a conversion means (such as an electro-optic modulator) for producing a combined light beam that comprises at least two component light beams of discrete wavelength from the output of said single wavelength laser source, and transmit optics to direct the combined light beam to a remote target. Each component light beam of the combined light beam traverses the same optical path from the single wavelength laser source to the transmit optics. The device is used to make differential absorption measurements.
摘要:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate light, the wavelength of said light source being tuned with the spectral signature of methane, whereby the light can be directed onto a measuring field. The detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve the remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stable structure. According to the invention, the light source generates light with a wavelength at which methane is absorbed, wherein the wavelength lies between 3200 nm and 3300 nm, and the light source has an optical parametric oscillator with injection seeding, the oscillator being associated with a pump laser.
摘要:
Gases such as pollutants are discerned in the open air, preferably using a laser to emit an infrared light beam along a sight path for illuminating the gases. A telescope is directed along the sight path and collects light from the gases, the combination of the laser and telescope permitting redirection of the sight path to any target, such as fugitive emissions of a stack. An optical tunable filter is coupled to the telescope for selecting a particular optical wavelength or band, and focusing the filtered wavelength on a detector. A processor 72) is coupled to the detector output and pulses the laser. The processor analyzes the light levels as a function of wavelength to discriminate for the presence of selected gases by determining a characteristic pattern of light absorption and light emission by the gases. The tunable filter has an acousto-optical crystal of Tl.sub.3 AsSe.sub.3, in which an RF acoustic wave is generated for varying diffraction of light by the filter, thereby selecting a wavelength. A nonlinear output crystal selectively generates harmonics for increasing wavelength coverage, and can also be Tl.sub.3 AsSe.sub.3. When the laser is off, the filter acts on infrared emissions of the gases. Sensitivity to narrow emission lines is increased by modulating the RF drive to the tunable filter, producing derivatives of the spectra.
摘要:
A method and apparatus for airborne prospecting for base and precious metal deposits, petroleum and natural gas deposits, geothermal steam deposits, and leaks in natural gas pipelines. A trace gas associated with the deposits in the near-surface atmosphere is detected with a differential absorption optical technique utilizing only a single laser beam to perform remote differential optical measurement. Anomalies in the tracer gas, which are indicative of underground deposits, are detected by transmiting a laser beam having narrow linewidth laser pulses at a high repetition rate with a center wavelength approximately equal to the atomic absorption line of the tracer gas to the area under investigation. The pulses are directed toward the investigated area from an airborne platform, reflected off the ground, and are collected by a detector on the airborne platform. Each pulse received is then broken down into a portion containing energy which is coincident with the absorption line of the tracer gas and a portion which is non-coincident with the absorption line of the tracer gas using a special optical filter. A tracer gas cell removes all the energy from the pulse which is coincident with the tracer gas absorpotion line, and the energy detected from the tracer gas cell corresponds to the amount of energy in the pulse which is off-resonance. By subtracting the off-resonance energy from the total energy received, it is possible to calculate the energy in the pulse which is received in the on-resonance spectral interval.