Abstract:
A method and device for frequency conversion of the radiation of a pulsed optical parametric oscillator (OPO) through sum or difference frequency mixing of a pulsed laser pump radiation with an OPO radiation, where the frequency mixing is integrated into the OPO resonator (1). The method permits the use of OPOs with high conversion efficiency in spectral ranges for scientific, technical and medical applications.
Abstract:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate light, the wavelength of said light source being tuned with the spectral signature of methane, whereby the light can be directed onto a measuring field. The detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve the remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stable structure. According to the invention, the light source generates light with a wavelength at which methane is absorbed, wherein the wavelength lies between 3200 nm and 3300 nm, and the light source has an optical parametric oscillator with injection seeding, the oscillator being associated with a pump laser.
Abstract:
Solder materials, such as a solder paste, and contact surfaces for solder connections are provided in which a metal stearate is used as a flux. The metal stearate is applied either as a solid layer on the solder particles or as contact surfaces or is present as a dispersion or solution in a binder. Advantageously, such materials allow one to avoid the use of classical fluxes. In particular, non-resin solder materials can be provided. A simplified storage and processability of the solder materials results, while at the same time producing comparatively better solder connections. The ability to use metal stearates as a flux is achieved if the first oxide of the metals used is formed from pure metal at lower oxygen activity (ao) than the first chromium oxide of chromium, preferably lower than the first titanium oxide of titanium, and if the metal stearate is present in a sufficient amount.
Abstract:
The invention relates to a mobile remote detection device for accumulations of methane, comprising an emitter device having a light source in order to generate light, the wavelength of said light source being tuned with the spectral signature of methane, whereby the light can be directed onto a measuring field. The detection device also comprises a detector device for detecting backscattered light, and an evaluation device. The aim of the invention is to improve the remote detection device in such a manner that it has a high degree of measuring sensitivity with a compact and stable structure. According to the invention, the light source generates light with a wavelength at which methane is absorbed, wherein the wavelength lies between 3200 nm and 3300 nm, and the light source has an optical parametric oscillator with injection seeding, the oscillator being associated with a pump laser.