Abstract:
The invention relates to a method and to a system for optimizing the commissioning of at least one of a plurality of field devices in an automation technology system, which are used in different applications, wherein the system comprises at least: one database for saving application information and device types of the plurality of field devices and for saving parameter sets of the plurality of field devices; an electronic computation unit that accesses the remotely arranged database and classifies, assigns, compares, and/or processes the data saved there and has an algorithm for creating and proposing an optimal parameter set; software for supporting a user during commissioning of one of the plurality of field devices, wherein the electronic computation unit is operated by means of the software.
Abstract:
An input/output (I/O) device for an automation control system includes a base portion configured to communicatively connect the I/O device with at least one other I/O device, an I/O module physically and communicatively connected to the base portion and comprising I/O communication circuitry, a terminal block physically and communicatively connected to the base portion, and an ejection device configured to eject the I/O module or the terminal block from the base portion by pushing the I/O module or the terminal block out of engagement with the base portion when activated.
Abstract:
A pool or spa control system includes, a main control panel housing a motherboard, relay bank, and local terminal. The motherboard includes a processor in two-way communication with a relay bank socket via an internal bus. The relay bank is connectable to the relay bank socket and includes a processor, memory, plurality of relays, connector, and an internal bus establishing two-way communication between the relay bank processor and the motherboard processor when the relay bank is connected to the relay bank socket. The local terminal includes a control processor, user interface, and memory, and is in two-way communication with the motherboard processor for allowing user control of the system. The control processor automatically discovers and assigns the relay bank a network address upon connection of the relay bank to the motherboard relay bank socket, and the relay bank returns relay bank parameter information, which the local terminal stores in memory.
Abstract:
Systems and methods are provided for utilizing electronic keying features stored within one of the components (e.g., I/O modules, terminal blocks, bases, and so forth) of I/O devices, and which may be read or detected by electronic key identification circuitry in one of the other components of the I/O devices. More specifically, the electronic keying features may include unique identification keys that may be read or detected by the electronic key identification circuitry to determine whether the components (e.g., a paired I/O module and terminal block) are associated with each other and intended to operate together. For example, in certain embodiments, the electronic key feature may be disposed within a terminal block and the electronic key identification circuitry may be disposed within an I/O module, or vice versa. In addition, in certain embodiments, the electronic key feature and/or the electronic key identification circuitry may be removable from their respective component of the I/O device.
Abstract:
A system for monitoring and controlling aquatic equipment is provided. The system includes a variable speed pump, a controller configured to determine operational parameters of the variable speed pump and to control operation of the variable speed pump, and a wireless communication system operatively coupled to the controller. The wireless communication subsystem is configured to transmit one or more of the operational parameters of the variable speed pump to a device over a WiFi wireless and/or a Bluetooth wireless connection. The wireless communication subsystem is configured to receive one or more control parameters from the device, and the controller controls operation of the variable speed pump based on the one or more control parameters.
Abstract:
An industrial control system comprising at least one industrial controller and method of transferring data in an industrial controller include use system-specific firmware of the industrial controller to execute at least one system task of a predefined set of system tasks independently from a user-specific industrial control program. The at least one system task is adapted to use in the operating phase while execution of the instructions defined in the user-specific industrial control program the at least one file system service to move data in a first dedicated storage location of the first data storage unit to a second data storage unit formatted for use with a file system, or use the at least one file system service to move data from the second data storage unit to a second dedicated storage location of the first data storage unit.
Abstract:
Present embodiments include an adaptable automation control component that includes a base capable of communicatively coupling with a system bus and with a functional module that includes communication and control circuitry. The adaptable automation control component also includes a device power bus including electrical contacts that are capable of communicatively coupling the adaptable automation control component with a separate automation control component, and an activation mechanism including circuitry capable of continuing the device power bus when the activation mechanism is engaged, and capable of discontinuing the device power bus when the activation mechanism is disengaged. The adaptable automation control component facilitates functionality of the adaptable automation control component as an input/output module or a power distribution module depending on whether the activation mechanism is engaged or disengaged.
Abstract:
An input/output (I/O) device for an automation control system includes a base portion configured to communicatively connect the I/O device with at least one other I/O device, an I/O module physically and communicatively connected to the base portion and comprising I/O communication circuitry, a terminal block physically and communicatively connected to the base portion, and an ejection device configured to eject the I/O module or the terminal block from the base portion by pushing the I/O module or the terminal block out of engagement with the base portion when activated.
Abstract:
Present embodiments include an adaptable automation control component that includes a base capable of communicatively coupling with a system bus and with a functional module that includes communication and control circuitry. The adaptable automation control component also includes a device power bus including electrical contacts that are capable of communicatively coupling the adaptable automation control component with a separate automation control component, and an activation mechanism including circuitry capable of continuing the device power bus when the activation mechanism is engaged, and capable of discontinuing the device power bus when the activation mechanism is disengaged. The adaptable automation control component facilitates functionality of the adaptable automation control component as an input/output module or a power distribution module depending on whether the activation mechanism is engaged or disengaged.
Abstract:
Disclosed is a system for controlling pool/spa components. More particularly, disclosed is a system for controlling pool/spa components including a display screen and one or more processors presenting a control user interface for display on the display screen, wherein the control user interface includes a home screen comprising a first portion containing a first plurality of buttons and/or controls for controlling a first group of the plurality of pool/spa components associated with a first body of water, and a second portion containing a second plurality of buttons and/or controls for controlling a second group of the plurality of pool/spa components associated with a second body of water.