Abstract:
An electronics module includes a housing with: (i) a forced convection chamber including an internal forced convection space; and, (ii) a passive chamber including an internal passive space that is separated from the forced convection space. At least one fan is connected to the housing and adapted to induce forced convection airflow in the forced convection space. A heat sink is connected to the housing and includes: (i) a heat input portion exposed to the passive space; and, (ii) a heat output portion exposed to the forced convection space. A circuit board assembly is located in the passive space and includes at least one electronic component that is thermally engaged with the heat input portion of the heat sink. A clamping plate is secured to the heat sink and captures the circuit board to the heat sink. The circuit board is isolated from the fan-induced forced convection airflow.
Abstract:
An electronics module includes a latch with a first latch portion and a second latch portion. The latch portions move between a latched position and an unlatched position. A spring is located between the first and second latch portions and biases the first and second latch portions in first and second directions. The first latch portion comprises an actuation portion located externally from the housing and that is adapted to be manually engaged and moved linearly in the second direction to move the first latch portion from its latched position toward its unlatched position. The second latch portion includes a resilient tail with a locator tab that seats in either a first receiving location or a second receiving location of the first latch portion and that is selectively deflectable to disengage the locator tab from the second receiving location so that the spring moves the latch to the latched configuration.
Abstract:
An electronics module includes a latch with a first latch portion and a second latch portion. The latch portions move between a latched position and an unlatched position. A spring is located between the first and second latch portions and biases the first and second latch portions in first and second directions. The first latch portion comprises an actuation portion located externally from the housing and that is adapted to be manually engaged and moved linearly in the second direction to move the first latch portion from its latched position toward its unlatched position. The second latch portion includes a resilient tail with a locator tab that seats in either a first receiving location or a second receiving location of the first latch portion and that is selectively deflectable to disengage the locator tab from the second receiving location so that the spring moves the latch to the latched configuration.
Abstract:
Present embodiments include an automation control system that includes an input/output device module with a device bus therein. The input/output module also includes a first bus contact on a first side of the input/output device module and communicatively coupled with a first end of the device bus, and a second bus contact on a second side of the input/output device module and communicatively coupled with a second end of the device bus. The second side generally faces an opposite direction from the first side and the input/output device module is configured to be coupled with additional input/output device modules positioned on the first and second sides of the input/output device module via the first and second bus contacts. Further, the first and second bus contacts are positioned on non-lateral surfaces of the input/output device module, the first and second contacts include spring-loaded connectors, the first and second contacts include two-prong or three-prong forks, or the input/output device module is a terminal block.
Abstract:
An electronics module includes a housing with: (i) a forced convection chamber including an internal forced convection space; and, (ii) a passive chamber including an internal passive space that is separated from the forced convection space. At least one fan is connected to the housing and adapted to induce forced convection airflow in the forced convection space. A heat sink is connected to the housing and includes: (i) a heat input portion exposed to the passive space; and, (ii) a heat output portion exposed to the forced convection space. A circuit board assembly is located in the passive space and includes at least one electronic component that is thermally engaged with the heat input portion of the heat sink. A clamping plate is secured to the heat sink and captures the circuit board to the heat sink. The circuit board is isolated from the fan-induced forced convection airflow.
Abstract:
An electronics module includes a housing with: (i) a forced convection chamber including an internal forced convection space; and, (ii) a passive chamber including an internal passive space that is separated from the forced convection space. At least one fan is connected to the housing and adapted to induce forced convection airflow in the forced convection space. A heat sink is connected to the housing and includes: (i) a heat input portion exposed to the passive space; and, (ii) a heat output portion exposed to the forced convection space. A circuit board assembly is located in the passive space and includes at least one electronic component that is thermally engaged with the heat input portion of the heat sink. A clamping plate is secured to the heat sink and captures the circuit board to the heat sink. The circuit board is isolated from the fan-induced forced convection airflow.
Abstract:
Present embodiments include an adaptable automation control component that includes a base capable of communicatively coupling with a system bus and with a functional module that includes communication and control circuitry. The adaptable automation control component also includes a device power bus including electrical contacts that are capable of communicatively coupling the adaptable automation control component with a separate automation control component, and an activation mechanism including circuitry capable of continuing the device power bus when the activation mechanism is engaged, and capable of discontinuing the device power bus when the activation mechanism is disengaged. The adaptable automation control component facilitates functionality of the adaptable automation control component as an input/output module or a power distribution module depending on whether the activation mechanism is engaged or disengaged.
Abstract:
Present embodiments include an adaptable automation control component that includes a base capable of communicatively coupling with a system bus and with a functional module that includes communication and control circuitry. The adaptable automation control component also includes a device power bus including electrical contacts that are capable of communicatively coupling the adaptable automation control component with a separate automation control component, and an activation mechanism including circuitry capable of continuing the device power bus when the activation mechanism is engaged, and capable of discontinuing the device power bus when the activation mechanism is disengaged. The adaptable automation control component facilitates functionality of the adaptable automation control component as an input/output module or a power distribution module depending on whether the activation mechanism is engaged or disengaged.
Abstract:
Present embodiments include an automation control system that includes an input/output device module with a device bus therein. The input/output module also includes a first bus contact on a first side of the input/output device module and communicatively coupled with a first end of the device bus, and a second bus contact on a second side of the input/output device module and communicatively coupled with a second end of the device bus. The second side generally faces an opposite direction from the first side and the input/output device module is configured to be coupled with additional input/output device modules positioned on the first and second sides of the input/output device module via the first and second bus contacts. Further, the first and second bus contacts are positioned on non-lateral surfaces of the input/output device module, the first and second contacts include spring-loaded connectors, the first and second contacts include two-prong or three-prong forks, or the input/output device module is a terminal block.