Abstract:
A redundant control system including at least three redundant signals is presented. The redundant control system includes a failure circuit associated with each of the redundant signals. The failure circuit generates a failure signal in response to an occurrence of a failure of a corresponding one of the redundant signals. A select circuit is associated with each of the redundant signals. The select circuit is receptive to a default signal associated with the corresponding one of the redundant signals, to the failure signal, and to the corresponding one of the redundant signals. The select circuit selects the default signal when the failure signal indicates a failure of the corresponding one of the redundant signals and selects the corresponding one of the redundant signals when the failure signal does not indicate a failure for the corresponding one of the redundant signals. A median determination circuit is receptive to the default signals selected and the redundant signals selected to determine a median signal indicative of a median of the default signals selected and the redundant signals selected.
Abstract:
A circuit arrangement which comprises at least two acceleration sensors for measuring an acceleration of at least one part of the hazardous device, at least one logic circuit for evaluating measured values of the at least two acceleration sensors, at least one memory for storing a comparison value, and at least one safety device controlled by an output of the logic circuit. The safety device is adapted to bring the hazardous device into a safe state in response to a switching command received via the output of the logic circuit. The logic circuit transmits the switching command to the safety device when the measured acceleration of the part of the hazardous device or a value derived from the measured acceleration has a predetermined ratio to the stored comparison value. Furthermore, a method for monitoring a hazardous device is also disclosed.
Abstract:
A method and a device for securely switching between operating modes of an industrial controller for machine tools or production machines are described. Before the operating mode is switched, the operator is identified by identification means that transmit to an operator's console of the controller a redundant binary enable signal after a successful identification. The operator is allowed to switch between operating modes by using the keys of the operator's console implemented in safe technology as long as the enable signal is received and is error-free. With the method and the device, the operating modes of an industrial controller for machine tools or production machines can be easily, reliably and cost-effectively switched.
Abstract:
A circuit arrangement which comprises at least two acceleration sensors for measuring an acceleration of at least one part of the hazardous device, at least one logic circuit for evaluating measured values of the at least two acceleration sensors, at least one memory for storing a comparison value, and at least one safety device controlled by an output of the logic circuit. The safety device is adapted to bring the hazardous device into a safe state in response to a switching command received via the output of the logic circuit. The logic circuit transmits the switching command to the safety device when the measured acceleration of the part of the hazardous device or a value derived from the measured acceleration has a predetermined ratio to the stored comparison value. Furthermore, a method for monitoring a hazardous device is also disclosed.
Abstract:
A redundant control system including at least three redundant signals is presented. The redundant control system includes a failure circuit associated with each of the redundant signals. The failure circuit generates a failure signal in response to an occurrence of a failure of a corresponding one of the redundant signals. A select circuit is associated with each of the redundant signals. The select circuit is receptive to a default signal associated with the corresponding one of the redundant signals, to the failure signal, and to the corresponding one of the redundant signals. The select circuit selects the default signal when the failure signal indicates a failure of the corresponding one of the redundant signals and selects the corresponding one of the redundant signals when the failure signal does not indicate a failure for the corresponding one of the redundant signals. A median determination circuit is receptive to the default signals selected and the redundant signals selected to determine a median signal indicative of a median of the default signals selected and the redundant signals selected.
Abstract:
A method and a device for securely switching between operating modes of an industrial controller for machine tools or production machines are described. Before the operating mode is switched, the operator is identified by identification means that transmit to an operator's console of the controller a redundant binary enable signal after a successful identification. The operator is allowed to switch between operating modes by using the keys of the operator's console implemented in safe technology as long as the enable signal is received and is error-free. With the method and the device, the operating modes of an industrial controller for machine tools or production machines can be easily, reliably and cost-effectively switched.