摘要:
Systems, methods and devices for the automated delivery of goods form one to another using a robotic tug and accompanying cart. A computer within the tug or cart stores an electronic map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes both wired and wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
摘要:
Systems, methods and devices for the automated delivery of goods form one to another using a robotic tug and accompanying cart. A computer within the tug or cart stores an electronic map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes both wired and wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
摘要:
A method for moving one or more mobile drive units within a workspace includes receiving, from a first mobile drive unit, a reservation request requesting use of a first path segment to move in a first direction. The method further includes determining that a second mobile drive unit is currently located on the first path segment and determining whether the second mobile drive unit is moving in the first direction. Additionally, the method includes transmitting a reservation response indicating that the reservation request is denied, in response to determining that the second mobile drive unit is not moving in the first direction. The method also includes transmitting a reservation response indicating that the reservation request is granted, in response to determining that the second mobile drive unit is moving in the first direction.
摘要:
A guided vehicle system that achieves a higher conveyance efficiency by manipulating an exclusion control executed with respect to a junction section includes a traveling path, a plurality of guided vehicles, and a guided vehicle controller. The traveling path includes a linear section, an exit-side connecting path, and a second junction section where the linear section and the exit-side connecting path converge. The guided vehicles travel along the traveling path. The exit-side connecting path includes a standby section. The guided vehicle controller controls the movement of the guided vehicles. During a period until a prescribed number of guided vehicles has stopped in the standby section of the exit-side connecting path, the guided vehicle controller allows guided vehicles to pass from the linear section to the second junction section continuously while making guided vehicles wait at the standby section of the exit-side connecting path.
摘要:
A method for managing flow of containers over asynchronous conveyors used in semiconductor automated material handling systems (AMHS) is defined. The method includes providing a conveyor and enabling travel of a first container in a first direction on the conveyor and enabling travel of a second container in a second direction on the conveyor. The second direction being toward the first direction. The method also includes determining a destination of the first and second containers along the conveyor (e.g., such as a load port). The method then directions one of the first or second containers to reverse its direction to enable one of the first or second containers to arrive to its destinations. The directing acts to minimize travel or wait time of the first or second containers on the conveyor belt. The directing enables higher throughput on the conveyor and enables more than one container to travel on the conveyor at the same time.
摘要:
Systems, methods and devices for the automated delivery of goods form one to another using a robotic tug and accompanying cart. A computer within the tug or cart stores an electronic map of the building floor plan and intended paths for the tug to take when traversing from one location to the next. During the delivery, a variety of different sensors and scanners gather data that is used to avoid obstacles and/or adjust the movement of the tug in order to more closely follow the intended path. The system preferably includes both wired and wireless networks that allow one or more tugs to communicate with a tug base station, a primary network located at the site of the delivery and a remote host center that monitors the status and data collected by the tugs.
摘要:
Communication between a controller and a set of automated vehicles in a manufacturing facility is improved by use of a closed-loop control system that operates on a real-time interrupt basis in which autonomous carriers report their location, sensed from reference markers along a track, the reference markers being referenced to an absolute grid in space, to a central controller or to one of a set of zone controllers that monitor the location of nearby vehicles that ordinarily use a token-passing system to avoid collisions, but which controllers can intervene to prevent one vehicle from blocking or interfering with another.
摘要:
In the travel control method in the mobile robot system including a plurality of mobile robots and the control station for controlling these mobile robot, the control station directs one of a plurality of mobile robots to the destination robot, responding to the direction, searches the route to the destination directed by the control station and sends the result to the control station. The control station which receives this in formation checks if the travel path searched by the mobile robot is already reserved by other mobile robots or not by the reservation table. If not, the control station informs the reserve completion to said mobile robot. The mobile robot which received the information of the reservation completion travels automatically along the travel path which is already reserved. In addition, said control station, when there are other mobile robots which disturb the travel of each mobile robot, directs the robot to wait or to take an alternate route according to the situation, or directs other mobile robots that disturb the travel to halt.
摘要:
Apparatus and methods related to routing robots are provided. A roadmap of an environment that includes first and second robots can be received. The roadmap can be annotated with unidirectional lanes connecting conflict regions, where each lane ends so to avoid blocking a conflict region. First and second routes for the respective uses of the first and second robots can be determined, where both the first and second routes include a first lane connected to a first conflict region. A first, higher priority and a second, lower priority can be assigned to the respective first and second robots. It can be determined that the second robot following the second route will block the first robot on the first lane. Based on the first priority being higher than the second priority, the computing device can alter the second route to prevent the second robot from blocking the first robot.
摘要:
The present disclosure discloses a dispatching method and device for robots, and a non-transitory readable storage medium, and relates to the field of computer technology. The method of the present disclosure includes: obtaining path condition information within a warehouse; calculating pickup time of each candidate robot of a plurality of candidate robots according to a location of the candidate robot and the path condition information; dispatching a target robot to perform a pickup task according to the pickup time of each candidate robot.