摘要:
A method for control of an industrial robot, which has a plurality of movement axes with a position sensor for each of said axes which is adapted to deliver an output signal which defines the current position of the axis, and a control system for control of the axes of the robot. Continuously during operation of the robot for at least one mechanically critical point (i) of the robot, the relevant load (&tgr;i) during a predetermined period of time (&Dgr;t) is calculated on the basis of the output signals (&phgr;1,&phgr;2 . . . &phgr;6) from the position sensors and a mathematical model of the robot. Further, the rate of fatigue ( Δ D i Δ t ) of the point is calculated on the basis of the calculated load and with knowledge of the fatigue strength (Nij) of the material at the critical point. The performance (&phgr;axis,max, &tgr;axis,max) of the robot is adjusted in dependence on the rate of fatigue and the desired service life (tlife) of the robot.
摘要:
A robot service system including a robot including least one manipulator and a controller controlling the motion of the manipulator. A remote service center includes an analyzing computer, and a communication line between the robot controller and the remote service center. A monitoring component is configured to monitor the current operation of the controller and the current motions of the manipulator, and to transmit information on the current operation of the controller and the current motions of the manipulator to the remote service center. The analyzing computer is configured, upon request, to calculate new maximum permissible performance parameters for the robot based on the received information and to transmit the new maximum permissible performance parameters to the robot controller. The analyzing computer is further configured to calculate one or more monitoring parameter, and the monitoring component is further configured to supervise that the robot is not run outside allowed limits based on the monitoring parameters.
摘要:
Provided is an equipment life diagnostic device which assists in estimating operating conditions that are factors in determining the remaining life of equipment. This equipment life diagnostic device is provided with: an actual life consumption calculation unit which calculates the actual life consumption of equipment when the equipment is operating; an assumed life consumption setting unit which sets an assumed life consumption on the basis of the useful life of the equipment; a comparison unit which compares the actual life consumption calculated by the actual life consumption calculation unit with the assumed life consumption set by the assumed life consumption setting unit; and an output unit which, on the basis of the comparison result obtained from the comparison unit, displays information relating to the amount by which the actual life consumption is greater or less than the assumed life consumption.
摘要:
A robot service system including a robot including least one manipulator and a controller controlling the motion of the manipulator. A remote service center includes an analyzing computer, and a communication line between the robot controller and the remote service center. A monitoring component is configured to monitor the current operation of the controller and the current motions of the manipulator, and to transmit information on the current operation of the controller and the current motions of the manipulator to the remote service center. The analyzing computer is configured, upon request, to calculate new maximum permissible performance parameters for the robot based on the received information and to transmit the new maximum permissible performance parameters to the robot controller. The analyzing computer is further configured to calculate one or more monitoring parameter, and the monitoring component is further configured to supervise that the robot is not run outside allowed limits based on the monitoring parameters.