摘要:
This method, which allows acquisition and computation of geometrical data of at least one pattern associated with an ophthalmic object (6) for manufacturing ophthalmic lenses similar to the object or complementary thereto, is of the type in which a device (12) for acquiring and computing geometrical data is used, which comprises: a transparent support (13) adapted for bearing an ophthalmic object; on one side of the support, means (17) for illuminating this support; on the other side of the support, a video camera (25) adapted for producing a video signal representative of at least one pattern associated with the ophthalmic object laid on the support; and signal processing and analysis means (27) receiving at the input the video signal produced by the camera, and adapted for computing and providing the geometrical data. The method is characterized in that: (a) a verification pattern independent of said geometrical data is traced on the ophthalmic object (6), this verification pattern being asymmetrical relatively to each of two axes perpendicular to each other; (b) the ophthalmic object is positioned on the transparent support (13) of the acquisition and display device (12); and (c) by means of said device (12), said verification pattern is optically captured and analyzed.
摘要:
Disclosed wing-to-body join methods include commanding a wing to a first command position and then iteratively repeating a first-phase movement and/or commanding a wing to a second command position and then iteratively repeating a second-phase movement. The first-phase movement includes determining a real position of the wing, calculating a first-phase difference between the real position and the first command position, and commanding the wing to reduce the magnitude of the first-phase difference. The second-phase movement includes determining a real position of the wing, determining a real position of the body, calculating a second-phase difference based on the second command position and the real positions of the wing and body, and commanding the wing to reduce the magnitude of the second-phase difference. Some embodiments include performing a port-side move for a port wing of the aircraft and performing a starboard-side move for a starboard wing of the aircraft.
摘要:
A system (40) for processing a workpiece includes a support surface (88) for supporting a workpiece (44). The system (40) includes a processing tool (92) movable with respect to a processing path. The system (40) includes a sensor carriage (408) movable along a scan axis and having a light source (476, 515, 550, 586) located to emit a light beam at an angle to the scan axis onto a target surface of a workpiece (44), and a camera (484, 522, 558, 594) configured to record location data of the light beam on a target surface of a workpiece (44) as the sensor carriage (408) moves along the scan axis. The system (40) includes a control system for generating a three-dimensional point representation of a workpiece surface from the light beam location data, to control movement of the processing tool (92) based on the three-dimensional point representation of a workpiece (44).
摘要:
A method for evaluating a crankshaft. The method comprises receiving data related to a three dimensional scan of the crankshaft, generating a crankshaft computer model based on the data, and determining whether the crankshaft is suitable for machining into a machined crankshaft based on the crankshaft computer model.
摘要:
Described herein is an apparatus and method for characterizing the precise dimensions of a pair of eyeglass frames, including that of the internal setting groove, through a non-mechanical measurement mechanism. The intended spatial resolution in all three orthogonal axes (x, y, & z) is better than 50 microns (millionths of a meter).
摘要:
This method, which allows acquisition and computation of geometrical data of at least one pattern associated with an ophthalmic object (6) for manufacturing ophthalmic lenses similar to the object or complementary thereto, is of the type in which a device (12) for acquiring and computing geometrical data is used, which comprises: a transparent support (13) adapted for bearing an ophthalmic object; on one side of the support, means (17) for illuminating this support; on the other side of the support, a video camera (25) adapted for producing a video signal representative of at least one pattern associated with the ophthalmic object laid on the support; and signal processing and analysis means (27) receiving at the input the video signal produced by the camera, and adapted for computing and providing the geometrical data. The method is characterized in that: (a) a verification pattern independent of said geometrical data is traced on the ophthalmic object (6), this verification pattern being asymmetrical relatively to each of two axes perpendicular to each other; (b) the ophthalmic object is positioned on the transparent support (13) of the acquisition and display device (12); and (c) by means of said device (12), said verification pattern is optically captured and analyzed.
摘要:
A surgical robot including an imaging system comprising at least one camera, a processor in communication with the imaging system, a manipulation system in communication with the processor, and a visual display in communication with the processor. The processor is operable to calculate a mechanical property estimate for an area of an environment based on an environment model of tool-environment interaction data, create a composite image comprising a mechanical property map of the mechanical property estimate overlaid on an environment image from the at least one camera, and output the composite image on the visual display.
摘要:
A surgical robot including an imaging system comprising at least one camera, a processor in communication with the imaging system, a manipulation system in communication with the processor, and a visual display in communication with the processor. The processor is operable to calculate a stiffness estimate for an area of an environment based on an environment model of tool-environment interaction data, create a composite image comprising a stiffness map of the stiffness estimate overlaid on an environment image from the at least one camera, and output the composite image on the visual display.
摘要:
A method of reproducing a three dimensional (3D) image by counter-distorting a two dimensional (2D) image prior to vacuum forming. A captured or obtained image of a subject is digitalized into 3D and 2D formats and used to create a 3D surface using a CNC machine. A standardized grid pattern with numerous reference points is printed on a vacuum formable material and vacuum formed on the 3D surface representing a subject. The reference points on the grid are displaced during the vacuum forming process due to the 3D nature of the surface. If the image of the subject were printed on the vacuum formable material, it would appear distorted. The displaced reference points are observed and the data is entered into the inventive software which generates a new image with compensated morphological changes. When the new image is vacuum formed on vacuum formable material under the same conditions, the new image would not appear distorted and would accurately depict the subject in 3D.
摘要:
A method and apparatus may be present for inspecting an object. A plurality of locations associated with a plurality of operations performed by a tool on the object may be tracked. The plurality of locations is tracked while the plurality of operations is performed on the object. A path for the tool may be mapped using the plurality of locations to form a tool path. The tool path may be compared to a model of the object.