摘要:
An embodiment includes a method of determining a collision-free space for a robotic welding system. The method includes fixing a location of a part to be welded in a 3D coordinate space of a robotic welding system. An arm of the robotic welding system is moved around the part within the 3D coordinate space. Data corresponding to positions and orientations of the arm in the 3D coordinate space are recorded as the arm is moved within the 3D coordinate space around the part. The data is translated to swept volumes of data within the 3D coordinate space. The swept volumes of data are merged to generate 3D geometry data representing a continuous collision-free space within the 3D coordinate space.
摘要:
To provide an arc welding robot system that displays a current waveform graphically during arc welding and realizes parameter adjustment on a display screen. An arc welding robot system comprises a robot controller and a teaching operation terminal. The robot controller comprises: an arc sensor; and a welding current storage unit that stores the current value of a welding current detected by the arc sensor during implementation of the arc welding. The teaching operation terminal comprises: a control unit; and a display on which data is displayed. The control unit comprises: a welding current display unit that displays the current value and the waveform of the welding current in any weaving cycle on the display; a sampling current area display unit that displays a sampling current area on the display; and a current waveform display shift unit that shifts the waveform of the welding current in a temporal axis direction on the display unit.
摘要:
The present invention provides an arc welding control system and method capable of simultaneously, sophisticatedly performing a weaving width control operation and a torch height control operation. Influence ratios (δw and δz) of influences of a torch height deviation (ΔPh) and a groove wall distance deviation (ΔPd) with respect to a manipulated variable (Δw) of a weaving width and a manipulated variable (Δz) of a torch height are set in accordance with a groove angle (θ) of a workpiece (5). A calculation unit (21) calculates the manipulated variables (Δz and Δw) of actuators (13 and 14) regarding the torch height and the weaving width such that the influence ratios (δw and δz) become large as the groove angle (θ) becomes large.
摘要:
The present invention provides an arc welding control system and method capable of simultaneously, sophisticatedly performing a weaving width control operation and a torch height control operation. Influence ratios (δw and δz) of influences of a torch height deviation (ΔPh) and a groove wall distance deviation (ΔPd) with respect to a manipulated variable (Δw) of a weaving width and a manipulated variable (Δz) of a torch height are set in accordance with a groove angle (θ) of a workpiece (5). A calculation unit (21) calculates the manipulated variables (Δz and Δw) of actuators (13 and 14) regarding the torch height and the weaving width such that the influence ratios (δw and δz) become large as the groove angle (θ) becomes large.
摘要:
A method and system are provided for a trackless autonomous crawling all-position arc welding robot with wheels and permanent magnet caterpillar belts. A sensor detects a welding seam position and transmits the position to a tracking controller. The tracking controller sends instructions to a welding torch which may be moved in generally horizontal and vertical directions based upon the instructions. Additionally, a crawler drive controller receives the welding seam position and sends a control signal to an AC servomotor drive that positions the crawler based on the control signal.
摘要:
A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.
摘要:
A method and system are provided for a trackless autonomous crawling all-position arc welding robot with wheels and permanent magnet caterpillar belts. A sensor detects a welding seam position and transmits the position to a tracking controller. The tracking controller sends instructions to a welding torch which may be moved in generally horizontal and vertical directions based upon the instructions. Additionally, a crawler drive controller receives the welding seam position and sends a control signal to an AC servomotor drive that positions the crawler based on the control signal.
摘要:
An apparatus (10) and method for preheating welds uses a centered induction plate (12) having preferably a plurality of induction coils (30, 32) to impart the generation of heat in the materials to be welded (14), being interactively controlled by at least a temperature sensor (90, 92) and power supply control loop (16) so that even preheating can be obtained for a selected length of time given the parameters of the weld desired.
摘要:
A gap welding process (10) for manipulating a movable robotic welder (30) for making a weld between two or more substantially immovable work pieces (51) using a higher level programming language (20). The gap welding process (10) performs a data transfer routine which takes spreadsheet data (18) representing expected variables, runs a data conversion program (20) that creates weld program data including point position, user frames (34 and 36), weld schedule, seam tracking schedule, weave schedule, azimuth orientation, travel speed, wait time, weave type and number of digital output control data. The gap welding process (10) also performs a gap-sensing routine (28) for actual weld gap measuring by using the robotic welder (30) to touch specific locations on pieces forming the gap or fixturing to produce weld variance data. The gap welding process (10) then uses a weld control program in conjunction with the weld program data (22), weld variance data (26), and feedback data (44) that is gathered during the welding process to determine and perform the correct manipulation required to produce torch movements to accurately weld the gap (32).
摘要:
The light pinpointing device is for producing a pinpointing light signal at an operative center point of a robot tool. The pinpointing light signal is useful to properly position the robot tool during the teaching phase. The light pinpointing device comprises a frame having first and second opposite ends, the first end being provided with a fastener for fastening the frame to an end of the robot tool. A light source assembly is provided to produce a pair of light beams inside the frame. A lens in front of the light source assembly is provided for directing the light beams through the second end of the frame in converging directions so that the light beams intersect with each other at a distance from the end of the robot tool corresponding to the operative center point thereof, thereby providing the pinpointing light signal.