Abstract:
A backlash acceleration control method capable of more accurately setting a timing for an initiation for a backlash acceleration correction in a servo system that carries out a feedforward control compared with conventional methods. According to this method, the backlash acceleration correction is initiated at the time when the feedforward amount is reversed from positive to negative or vice versa. Furthermore, this initiation time for the backlash acceleration correction can also be determined according to the point of change of the sign of a speed command modified by the feed forward amount. When the feedforward coefficient becomes close to "1", the positional deviation becomes almost "0", and therefore an actual shift movement comes to follow the shift command without time lag. Accordingly, a point where a shift direction of the shift command is reversed will be dispersed, and so an initiation time for the backlash acceleration correction cannot be determined accurately. However, a point (Ts), where a sign of the feedforward amount is reversed, can accurately represent the turning point of the shift direction.
Abstract:
A numerical controller of a processing machine determines corresponding setpoint axis values based on setpoint position values for position-regulated axes operating on machine elements. Before controlling the position-regulated axes, volumes to be occupied by protection bodies associated with the machine elements, a workpiece and a tool are defined and it is checked whether the protection bodies remain disjoint while controlling the position-regulated axes. Depending on the result of the checks, the controller either controls the position-regulated axes in accordance with the setpoint position values or merely executes an error response without control. The controller contains a position error field which specifies for any given setpoint axis value an actual position the tool relative to the workpiece. The position error field is taken into consideration, at least for a subset of the protection bodies, when defining the volumes to be occupied by the protection bodies upon activation of the position-regulated axes.
Abstract:
A control device includes a main servocontrol loop having a servocontrolled system, and a compensation device on the input side of the control device. The control device includes an internal loop that receives a first signal derived from the main servocontrol loop as input, and generates, as a function firstly of the first signal and secondly of a second signal characteristic of a parameter of the servocontrolled system, an error signal characteristic of the difference between said second signal and a theoretical signal determined using a model. The error signal being injected into the main servocontrol loop to correct the control of the servocontrolled system. The internal loop and/or the main loop include a variable gain amplifier, and the control device controls the gain of the variable gain amplifier.
Abstract:
Control device comprising a main servocontrol loop that comprises a servocontrolled device, and compensation means on the input side of this servocontrolled device, the said device comprising a secondary loop that receives a signal derived from the servocontrol loop as input, and generates an error characteristic of the difference between a signal characteristic of a parameter of the servocontrolled device and a theoretical signal determined using a model, as a function firstly of this input signal and secondly of the said signal characteristic of a parameter of the servocontrolled device, this error signal being injected into the main loop to correct the control of the servocontrolled device, characterised in that the secondary loop and/or the main loop comprise at least one variable gain amplifier, the said device comprising means for controlling the gain of the said amplifier as a function firstly of the said signal characteristic of a state of the servocontrolled device, and secondly a signal derived from the main loop on the input side of the said device.
Abstract:
A learning control system for a nano-precision motion stage comprises a closed-loop feedback section including a motion trajectory generator, a feedback controller, a motion stage, and a first Fourier transformer; and a feedforward section including a second Fourier transformer, a learning controller, an iteration backward shift operator, and a Fourier inverse transformer. An iteration experiment count j is initialized as j=1, and a j-th frequency domain feedforward signal is initialized to 0; the system is run to collect a frequency domain error signal and a frequency domain position measurement signal; a (j+1)-th frequency domain feedforward signal is updated; and an iteration experiment count j is incremented by 1. The present disclosure can effectively suppress the influence of external noise and disturbances, and improve convergence performance. Moreover, the present disclosure requires less computation, achieves simple determination of learning gains and strong robustness, and is convenient for engineering applications.
Abstract:
A position control apparatus includes a detecting unit configured to detect a position of a control target, a subtracting unit configured to subtract an output of the detecting unit from a target value, an iterative learning control circuit including a filter into which a deviation between the output of the detecting unit and the target value is input, where the iterative learning control circuit feeds forward a control input to the control target, and a parameter computing unit configured to compute a variation in a parameter of the control target. A characteristic of the filter is changed in accordance with the variation in the parameter of the control target.
Abstract:
A position control apparatus includes a detecting unit configured to detect a position of a control target, a subtracting unit configured to subtract an output of the detecting unit from a target value, an iterative learning control circuit including a filter into which a deviation between the output of the detecting unit and the target value is input, where the iterative learning control circuit feeds forward a control input to the control target, and a parameter computing unit configured to compute a variation in a parameter of the control target. A characteristic of the filter is computed in accordance with the variation in the parameter of the control target.
Abstract:
In a control device for controlling a servo motor driving a robot arm, a target position command signal is input to a first operation section, which generates a speed command value for the speed feedforward. The target position command signal is also input to a delay section. A target position command signal delayed by a time period is obtained by the delay section and supplied to a second operation section. A positional deviation between the target position command signal and a position feedback signal is calculated by the second operation section. The obtained positional deviation is input to a third operation section and generated as a speed compensation command signal. A speed command signal obtained by addition of the speed feedforward signal and the speed compensation command signal is supplied to a servo driver for driving the servo motor. As a result, the time lag in the response of a system of the controlled system after the servo driver can be compensated for and an error in the positional deviation or the speed command signal can be prevented from being increased.