摘要:
A numerical controller for controlling a multi-axis machine calculates an axis-dependent translation error amount and an axis-dependent rotation error amount based on a command axis position. Translation and rotation compensation amounts are calculated based on the axis dependent translation and rotation error amounts, respectively. The translation and rotation compensation amounts are added to command linear and rotary axis positions, respectively. Three linear axes and three rotary axes are driven to the added positions, individually. Thus, there is provided a numerical controller that enables even machining with a side face of a tool or boring to be in commanded tool position and posture (orientation) in the multi-axis machine.
摘要:
A translation/rotation error compensation amount creating device creates, for a multi-axis machining apparatus having two rotation axes, a translation error compensation amount and a rotation error compensation amount both depending on the rotation axes. The translation/rotation error compensation amount creating device calculates the translation error compensation amount and the rotation error compensation amount based on an assembly error (set value) including at least an assembly error in a table surface or an assembly error in a spindle turning centerline in a multi-axis machining apparatus as well as the positions of the two rotation axes, and inputs the calculated error compensation amounts to a numerical controller controlling the multi-axis machining apparatus.
摘要:
A translation/rotation error compensation amount creating device creates, for a multi-axis machining apparatus having two rotation axes, a translation error compensation amount and a rotation error compensation amount both depending on the rotation axes. The translation/rotation error compensation amount creating device calculates the translation error compensation amount and the rotation error compensation amount based on an assembly error (set value) including at least an assembly error in a table surface or an assembly error in a spindle turning centerline in a multi-axis machining apparatus as well as the positions of the two rotation axes, and inputs the calculated error compensation amounts to a numerical controller controlling the multi-axis machining apparatus.
摘要:
A method for controlling a machine tool in which a main spindle on which a tool is mounted and a table holding a workpiece are moved relative to each other by two or more translation axes that are not perpendicular to each other and at least one rotation axis. In the method, an error in a position of the tool with respect to the workpiece due to a geometric error is corrected to calculate a command value for controlling the translation axis. The method includes a conversion step of converting the error and a correction value for correcting the error by performing a homogeneous coordinate transformation from a workpiece coordinate system to the imaginary Cartesian coordinate system, and a correction value calculation step of calculating a correction value in a command value coordinate system of the translation axis by performing a homogeneous coordinate transformation of the correction value.
摘要:
A numerical controller for controlling a multi-axis machine calculates an axis-dependent translation error amount and an axis-dependent rotation error amount based on a command axis position. Translation and rotation compensation amounts are calculated based on the axis dependent translation and rotation error amounts, respectively. The translation and rotation compensation amounts are added to command linear and rotary axis positions, respectively. Three linear axes and three rotary axes are driven to the added positions, individually. Thus, there is provided a numerical controller that enables even machining with a side face of a tool or boring to be in commanded tool position and posture (orientation) in the multi-axis machine.
摘要:
A method for controlling a machine tool in which a main spindle on which a tool is mounted and a table holding a workpiece are moved relative to each other by two or more translation axes that are not perpendicular to each other and at least one rotation axis. In the method, an error in a position of the tool with respect to the workpiece due to a geometric error is corrected to calculate a command value for controlling the translation axis. The method includes a conversion step of converting the error and a correction value for correcting the error by performing a homogeneous coordinate transformation from a workpiece coordinate system to the imaginary Cartesian coordinate system, and a correction value calculation step of calculating a correction value in a command value coordinate system of the translation axis by performing a homogeneous coordinate transformation of the correction value.
摘要:
A numerical controller controlling a five-axis machining machine having three linear axes and two rotation axes acquires a linear-axis-caused compensation amount associated with a combination of an instructed linear axis position and linear axis movement direction and an rotation-axis-caused compensation amount associated with a combination of an instructed rotation axis position and rotation axis movement direction, calculate a translation/rotation compensation amount based on the linear-axis-caused compensation amount and the rotation-axis-caused compensation amount, and adds the calculated translation/rotation compensation amount to the instructed linear axis position.
摘要:
A numerical controller of a processing machine determines corresponding setpoint axis values based on setpoint position values for position-regulated axes operating on machine elements. Before controlling the position-regulated axes, volumes to be occupied by protection bodies associated with the machine elements, a workpiece and a tool are defined and it is checked whether the protection bodies remain disjoint while controlling the position-regulated axes. Depending on the result of the checks, the controller either controls the position-regulated axes in accordance with the setpoint position values or merely executes an error response without control. The controller contains a position error field which specifies for any given setpoint axis value an actual position the tool relative to the workpiece. The position error field is taken into consideration, at least for a subset of the protection bodies, when defining the volumes to be occupied by the protection bodies upon activation of the position-regulated axes.