摘要:
An optical flow detection system is employed in conjunction with a target cuer system, which includes a sensor carried on a platform, for the purpose of either removing undesirable sensor motion or for the purpose of removing undesirable background motion so that targets may be more easily identified. The optical flow detection system includes an optical flow estimator which receives a plurality of pixels and generates therefrom an instantaneous pixel velocity value and a predicted pixel velocity value. The instantaneous pixel velocity values and predicted pixel velocity values are then manipulated to remove undesirable features included in the image sequence generated by the sensor. Methods for operating the optical flow detection system are also provided.
摘要:
A method and apparatus is provided to determine image affine flow from time-varying imagery. The novel artificial neural computational system of a cortical hypercolumn comprising a plurality of specific orientation (SO) columns and a least square error fitting circuit is based on a Lie group model of cortical visual motion processing. Time-varying imagery, comprising intensity imagery and time-derivative imagery is provided to a plurality of specific orientation (SO) columns comprising simple cells and Lie germs. The cortical representation of image time derivative and affine Lie derivatives are extracted from responses of simple cells and Lie germs, respectively. The temporal derivative and affine Lie-derivative information obtained from each specific orientation (SO) columns is applied to least square error fitting analog circuit having a three layer multiplicative neural architecture to determine image affine flow components in accordance with an error minimization gradient dynamical system technique.
摘要:
The process consists in estimating motion by execution of a gradient algorithm (2, 3) which brings to a minimum the mean square deviation of the local variations of the current point of the image with the point that is homologous to it in the preceding image, in initializing (7) the execution of the algorithm by the displacement values estimated in several directions within the close vicinity of the current point and by an initial vector of temporal prediction of the displacement between successive frames of the image, then in propagating each estimation in the direction of scanning of the lines of the image.
摘要:
A movement of a small picture block in a frame of video signals is provided by recursively applying a gradient method to a picture block in a present frame and a preceding frame to provide a series of sub-movements until said sub-movement decreases less than a predetermined value, and the resultant movement is obtained by the sum of the sub-movements. The present invention provides high accuracy in estimation of movement of a block in a picture as compared with a conventional gradient method, and is attractive in hardware implementation.
摘要:
Upon execution of the movement detection by way of a gradient method, the leftward and rightward sampling differences .DELTA.EL and .DELTA.ER at a change extremal value point are used to detect the respective movements in the vertical and horizontal directions. The movement amounts detected are selectively fetched. Upon addition/subtraction of the frame difference, the sign of sample is held until the positive or negative sign of the sample which is obtained from the result of comparison between the sampling difference values before and after the sample is changed. The accurate movement detection is performed by controlling the addition/subtraction in response to the holding signal.
摘要:
A method for detecting and tracking multiple moving targets from airborne video within the framework of a cloud computing infrastructure. The invention simultaneously utilizes information from an optical flow generator and an active-learning histogram matcher in a complimentary manner so as to rule out erroneous data that may otherwise, separately, yield false target information. The invention utilizes user-based voice-to-text color feature description for track matching with hue features from image pixels.
摘要:
Techniques for efficiently tracking points on a depth map using an optical flow are disclosed. In order to optimize the use of optical flow, isolated regions of the depth map may be tracked. The sampling regions may comprise a 3-dimensional box (width, height and depth). Each region may be “colored” as a function of depth information to generate a “zebra” pattern as a function of depth data for each sample. The disclosed techniques may provide for handling optical flow tracking when occlusion occurs by utilizing a weighting process for application of optical flow vs. velocity prediction to stabilize tracking.
摘要:
Techniques for efficiently tracking points on a depth map using an optical flow are disclosed. In order to optimize the use of optical flow, isolated regions of the depth map may be tracked. The sampling regions may comprise a 3-dimensional box (width, height and depth). Each region may be “colored” as a function of depth information to generate a “zebra” pattern as a function of depth data for each sample. The disclosed techniques may provide for handling optical flow tracking when occlusion occurs by utilizing a weighting process for application of optical flow vs. velocity prediction to stabilize tracking.
摘要:
Techniques for efficiently tracking points on a depth map using an optical flow are disclosed. In order to optimize the use of optical flow, isolated regions of the depth map may be tracked. The sampling regions may comprise a 3-dimensional box (width, height and depth). Each region may be “colored” as a function of depth information to generate a “zebra” pattern as a function of depth data for each sample. The disclosed techniques may provide for handling optical flow tracking when occlusion occurs by utilizing a weighting process for application of optical flow vs. velocity prediction to stabilize tracking.
摘要:
A moving obstacle detecting device detects moving objects, may be applied in the field of autonomous vehicles, intelligent robots, video monitoring system and similar systems. The device includes an optical flow extracting unit 1 for extracting optical flows for the respective local regions in the measured images, an focus of expansion (F.O.E.) calculating unit for calculating an F.O.E. of a straight line extended by the extracted optical flows, and a moving obstacle detecting unit for analyzing a temporal change of the calculated F.O.E. to judge the presence of the moving obstacle when the temporal positional change is larger than a predetermined variation quantity.