Abstract:
A source driver includes a first drive channel circuit, a voltage controller and a first programmable voltage buffer unit. The first drive channel circuit receives a first pixel data and a first reference voltage group, for driving the display device. The voltage controller receives a voltage command during a line data transmitting period, a horizontal blanking period or a vertical blanking period for generating a first reference voltage configuration data. The first programmable voltage buffer unit is coupled to the voltage controller and the first drive channel circuit, and receives the first reference voltage configuration data for applying the first reference voltage group to the first drive channel circuit. Furthermore, a method for driving a display device is also provided.
Abstract:
An OLED display device is provided. The OLED display device may include a first capacitor connected between a data line and a first node, a first transistor connected to the first node and a second node, an OLED connected between a low-level source voltage terminal and a third node, a second transistor connected to the second and third nodes, a driving transistor, and a second capacitor. The driving transistor may have a gate connected to the first node, a drain connected to the second node, and a source connected to a high-level source voltage terminal. One end of the second capacitor may receive a control signal, and the other end of the second capacitor may be connected to the first node.
Abstract:
A source driver includes a first drive channel circuit, a voltage controller and a first programmable voltage buffer unit. The first drive channel circuit receives a first pixel data from the timing controller via a data bus, converts the first pixel data to a first drive voltage according to a first reference voltage group, and drives a display panel by the first drive voltage. The voltage controller receives a voltage command from the timing controller, generates and changes a first reference voltage configuration data according to the voltage command. The first programmable voltage buffer unit is coupled to the voltage controller and the first drive channel circuit, and receives the first reference voltage configuration data to generate and adjust the first reference voltage group for applying to the first drive channel circuit. Furthermore, a method for updating a new gamma curve by the source driver is also provided.
Abstract:
In one embodiment of the present invention, to allow a circuit that compensates for variations in a threshold voltage of a drive element to operate properly and prevent luminances of other pixel circuits from fluctuating due to a compensation operation, a pixel circuit is disclosed. A driving TFT, a switching TFT, and an organic EL element are provided between a power supply wiring line and a common cathode, and a capacitor and a switching TFT are provided between a gate terminal of the driving TFT and a data line. A switching TFT is provided between a connection point B between the capacitor and the switching TFT and a reference supply wiring line, a switching TFT is provided between the gate terminal and a drain terminal of the driving TFT, and a switching TFT is provided between the gate terminal of the driving TFT and the connection point B.
Abstract:
A display drive chip and a display device including the same are disclosed. The display drive chip can include a first voltage generating unit outputting a power voltage and a second voltage generating unit outputting the power voltage. A circuit block can receive the power voltage; and a plurality of pads can be connected to internal pads of the power voltage, wherein the display drive has a layout structure in which at least two pads from among the plurality of pads are connected to the first voltage generating unit and the second voltage generating unit, respectively, and the plurality of pads can be connected to each other through external wiring.
Abstract:
Disclosed herein are a flat panel display which is capable of reducing consumption of standby power, and a method for driving the same. The flat panel display includes a display unit for displaying an image, a driving circuit for controlling driving of the display unit, a receiver for receiving a user command, and a power supply unit for setting a power mode to a driving mode or a standby mode according to a predefined power setting or the user command, and supplying driving power to the display unit, driving circuit and receiver in the driving mode and only to the receiver in the standby mode. When the power mode is set to the standby mode, the power supply unit generates the driving power using a battery contained therein and supplies the generated driving power to the receiver, and cuts off input of external power.
Abstract:
A switching power supply device has a large load power supply line for a CRT circuit, to and from which a dummy resistor for voltage stabilization is connected and disconnected by a switch. In standby state, a control unit turns off the switch to disconnect the dummy resistor from the power supply line. When receiving a power supply ON command input by a user operating a remote control, the control unit turns on the switch to connect the dummy resistor to the power supply line. At a predetermined time after the dummy resistor connection, the control unit makes a regulator active to start providing voltage to a video/audio signal processing circuit with sufficient current providable thereto. This enables to reduce power consumption of the power supply line with the dummy resistor, and to prevent problems caused by insufficient current in transient state from standby state to power supply ON state.
Abstract:
A display device which is suitable for connection to a computer etc. allows an operator to freely set a power saving mode to suppress the wasteful consumption of power. Power reduction means reduces, in a plurality of modes, the power supplied to device components included in the display device. Power management output selecting means sets any of the plurality of modes on the basis of a selection made by an operator. Signal detecting means monitors horizontal and vertical synchronizing signals sent from a computer and detects as a trigger signal a state in which at least one of them is not being received. In response to the trigger signal being detected, power management signal output means gives an instruction to the power reduction means to perform the set mode.
Abstract:
A control circuit of a power supply delivering a supply current to an inductor connected in series with the horizontal deflection yoke of a cathode ray tube display, the inductor being the primary coil of a transformer operatively connected for delivering a rectified low-pass filtered biasing voltage to the anode of the display, the low-pass filtering having a first time constant corresponding to the duration of a plurality of pictures, the control circuit having feedback circuitry for generating a monitoring voltage substantially proportional to the biasing voltage and for controlling the supply current to keep the monitoring voltage equal to a reference voltage; and feedforward circuitry for measuring the cathode current and for adding to the monitoring voltage a compensation voltage corresponding to the cathode current, low-pass filtered with a second time constant corresponding to the duration of a small number of lines and high-pass filtered with the first time constant.
Abstract:
a power supply of the display apparatus includes a switching mode power supply forming the main power supply of the display apparatus. The power supply of this invention includes an auxiliary power supply for supplying power with a universal serial bus (USB) hub. The power supply further includes a display power management signaling (DPMS) control circuit for managing the power saving between the full-on, standby, suspend, and power-off modes, a relay switch is provided across the power line directed to the main power supply. The DPMS control circuit responds to input status of the horizontal and vertical synchronization signals (Hsync, Vsync) and, in the power-off mode, it produces a control signal that cuts off the relay switch. The power supply of this invention provides a stable supply power with the USB hub even if the display apparatus enters the power-off mode of DPMS. Further, the power supply of this invention can cut off power supply directed to the main power supply when the display apparatus enters the power-off mode.