摘要:
An advanced initial core fuel configuration is for improving the fuel management efficiency and thus economics for a nuclear reactor. A method of implementing such an initial core involves providing a plurality of fuel assemblies having different average enrichments of uranium 235 and arranging the fuel assemblies in an initial core configuration structured to emulate a known equilibrium reload cycle core at least in terms of spatial reactivity distribution. The resulting average enrichment within the initial core ranges from below about 1.0 percent weight of uranium 235 to about 5.0 percent weight of uranium 235. An advanced lattice design is also disclosed.
摘要:
Fuel bundles for a nuclear reactor are disclosed, and in some embodiments include a first fuel element including thorium dioxide; a second fuel element including uranium having a first fissile content; and a third fuel element including uranium having a second fissile content different from the first fissile content. Nuclear reactors using such fuel bundles are also disclosed, including pressurized heavy water nuclear reactors. The uranium having the different fissile contents can include combinations of natural uranium, depleted uranium, recycled uranium, slightly enriched uranium, and low enriched uranium.
摘要:
A 17×17 jacketless fuel assembly for a PWR-type light-water reactor uses thorium as the fuel. The fuel assembly has a square shape in the plan view, a seed region, a blanket region that encircles it, an upper nozzle, and a lower nozzle. The fuel elements of the seed region re arranged in the rows and columns of a square coordinate grid and have a four-lobed profile that forms spiral spacer ribs along the length of a fuel element. The blanket region contains a frame structure within which a bundle of fuel elements made from thorium with the addition of enriched uranium is positioned. The blanket region fuel elements are arranged in the two or three rows and columns of a square coordinate grid.
摘要:
An advanced initial core fuel configuration is for improving the fuel management efficiency and thus economics for a nuclear reactor. The advanced initial core fuel configuration includes a plurality of fuel assemblies having different average enrichments of uranium 235 and arranging the fuel assemblies in an initial core configuration structured to emulate a known equilibrium reload cycle core at least in terms of spatial reactivity distribution. The resulting average enrichment within the initial core ranges from below about 1.0 percent weight of uranium 235 to about 5.0 percent weight of uranium 235. An advanced lattice design is also disclosed.
摘要:
An advanced initial core fuel configuration is for improving the fuel management efficiency and thus economics for a nuclear reactor. A method of implementing such an initial core involves providing a plurality of fuel assemblies having different average enrichments of uranium 235 and arranging the fuel assemblies in an initial core configuration structured to emulate a known equilibrium reload cycle core at least in terms of spatial reactivity distribution. The resulting average enrichment within the initial core ranges from below about 1.0 percent weight of uranium 235 to about 5.0 percent weight of uranium 235. An advanced lattice design is also disclosed.
摘要:
In a fuel assembly, a plurality of fuel rods are arranged in an array of 10 rows and 10 columns in the cross section of the fuel assembly. A flow resistance member is disposed in a central portion in the cross section at upper end portions of partial length fuel rods which are a part of the fuel rods. In the flow resistance member, resistance members are each disposed between ferrules arranged in an array of 6 rows and 6 columns in the diagonal direction of the flow resistance member. Resistance members are each disposed between the ferrules in a peripheral portion of the flow resistance member. By disposing the resistance members, the pressure loss in an inner region in the cross section of the fuel assembly is increased, and the flow rate of a gas-liquid two-phase flow in an outer region surrounding the inner region is increased.
摘要:
An advanced initial core fuel configuration is for improving the fuel management efficiency and thus economics for a nuclear reactor. The advanced initial core fuel configuration includes a plurality of fuel assemblies having different average enrichments of uranium 235 and arranging the fuel assemblies in an initial core configuration structured to emulate a known equilibrium reload cycle core at least in terms of spatial reactivity distribution. The resulting average enrichment within the initial core ranges from below about 1.0 percent weight of uranium 235 to about 5.0 percent weight of uranium 235. An advanced lattice design is also disclosed.
摘要:
Fuel bundles for a nuclear reactor are disclosed, and in some embodiments include a first fuel element including thorium dioxide; a second fuel element including uranium having a first fissile content; and a third fuel element including uranium having a second fissile content different from the first fissile content. Nuclear reactors using such fuel bundles are also disclosed, including pressurized heavy water nuclear reactors. The uranium having the different fissile contents can include combinations of natural uranium, depleted uranium, recycled uranium, slightly enriched uranium, and low enriched uranium.
摘要:
In a fuel assembly, a plurality of fuel rods are arranged in an array of 10 rows and 10 columns in the cross section of the fuel assembly. A flow resistance member is disposed in a central portion in the cross section at upper end portions of partial length fuel rods which are a part of the fuel rods. In the flow resistance member, resistance members are each disposed between ferrules arranged in an array of 6 rows and 6 columns in the diagonal direction of the flow resistance member. Resistance members are each disposed between the ferrules in a peripheral portion of the flow resistance member. By disposing the resistance members, the pressure loss in an inner region in the cross section of the fuel assembly is increased, and the flow rate of a gas-liquid two-phase flow in an outer region surrounding the inner region is increased.
摘要:
Nuclear fuel assemblies include fuel elements that are sintered or cast into billets and co-extruded into a spiral, multi-lobed shape. The fuel kernel may be a metal alloy of metal fuel material and a metal-non-fuel material, or ceramic fuel in a metal non-fuel matrix. The fuel elements may use more highly enriched fissile material while maintaining safe operating temperatures. Such fuel elements according to one or more embodiments may provide more power at a safer, lower temperature than possible with conventional uranium oxide fuel rods. The fuel assembly may also include a plurality of conventional UO2 fuel rods, which may help the fuel assembly to conform to the space requirements of conventional nuclear reactors.