Abstract:
A method of producing a color cathode ray tube occurs by forming pigment-coated particles by applying pigment coatings to green, blue, and/or red fluorescent particles, such that the coatings cover about half of each particle; forming a black matrix film having light transmission window portions on the inner surface of a glass panel; and applying the pigment-coated particles to the light transmission window portions so that substantially all of the pigment coating on each particle is located between the phosphor it coats and the inner surface of the glass panel.
Abstract:
A photo-conductive composition and CRT bulb having a photo-conductive layer formed of the same are provided. The photo-conductive composition comprises 5-15 wt % of a charge transmitting substance, represented by the structural formula (1); ##STR1## where R.sub.1 is selected from the group consisting of a phenyl group substituted by one to three substituents selected from the group consisting of amino, dialkylamino, C.sub.1 -C.sub.6 alkoxy, C.sub.1 -C.sub.6 alkyl and cyano groups; 9-alkyl carbazole group; naphthyl group, and R.sub.2 and R.sub.3 are same or different independently from each other, each being selected from the group consisting of hydrogen and C.sub.1 -C.sub.6 alkyl, phenyl and naphthyl groups, and n is between 0 and 2; 1-15 wt % of a charge generating substance which absorbs light in the wavelength range of an ultraviolet region; 70-94 wt % of a binder; and 0.05-1 wt % of a surfactant. The photo-conductive composition exhibits excellent sintering characteristic and can form a photoconductive layer having excellent coating properties, durability and luminance.
Abstract:
Disclosed is an electrostatic charging apparatus for electrostatically charging the inside surface of the screen panel of a color cathode ray tube to make powdery phosphor to be applied to the inside surface by the electrical attraction, which comprises a corona charger for electrostatically charging the inside surface, a stand frame for supporting the corona charger, a mounting means for supporting the screen panel with the part of the inside surface of the display being wholly exposed to the corona charger with a space therebetween, and a power supply for supplying a high voltage to the corona charger, wherein the corona charger has a convex surface with a plurality of charging electrodes uniformly distributed.
Abstract:
A method of fabricating a double level metal (DLM) anode plate for use in a field emission device comprises the steps of providing a transparent substrate 82 having an active region 58 and a bus region 62. Then providing electrically conductive regions 50 on the surface. The conductive regions 50 span the active region 58 and the bus region 62. Next, the surface is coated with an electrically insulating material 94 and then the electrically insulating material 94 is removed from selected portions of the bus region 62, the active region 58, and upper portions of the transparent substrate 82. A first bus 52 is provided for electrically connecting a first series of the conductive regions, a second bus 54 is provided for electrically connecting a second series of the conductive regions, and a third bus 56 is provided for electrically connecting a third series of the conductive regions. Luminescent material of a first color 88.sub.R is applied to the first series of conductive regions 50.sub.R, luminescent material of a second color 88.sub.G is applied to the second series of conductive regions 50.sub.G, and luminescent material of a third color 88.sub.B is applied to the third series of conductive regions 50.sub.B.
Abstract:
The invention relates to non-aqueous suspensions for the deposition of luminescent materials, particularly phosphors by electrophoresis. These suspensions comprise an organic, polar solvent constituted by a mixture of nitromethane and an aliphatic alcohol such as isopropyl alcohol, containing in solution at least one metal salt and at least one vegetable protein, as well as a powder of the luminescent material to be deposited in suspension in said solvent. These suspensions can be used for the production of tricolour screens having conductor tracks (15, 16, 17) covered with first colour (18), a second colour (19) and a third colour (20), the excitation of the phosphors being carried out by means of an electron source (1) having an emissive cathode with microtips (1c).
Abstract:
A method of manufacturing a luminescent screen assembly on an interior surface of a faceplate panel 12 for a color CRT 10 includes the steps of uniformly applying a solution of a material to form an organic conductive (OC) layer and overcoating the OC layer with a solution to form an organic photoconductive (OPC) layer, on the interior surface of the faceplate panel. The OPC layer 34 is conditioned by directing a stream of dry gas thereon to warm the OPC layer to a preheat temperature, while maintaining the panel at a panel temperature less than the preheat temperature. The OPC layer is exposed to IR radiation to rapidly increase the temperature of the OPC layer to a curing temperature, greater than the preheat temperature, to remove some of the volatilizable constituents from the OPC layer, without substantially increasing the temperature of the panel. The OPC layer is then cooled by directing at least one stream of cool gas onto the surface thereof, to lower the temperature of the OPC layer to a subsequent processing temperature.
Abstract:
The method of electrophotographically manufacturing a screen assembly on an interior surface of a faceplate panel for a color CRT, according to the present invention, includes the steps of sequentially coating the surface of the panel with a conductive solution to form a volatilizable organic conductive layer and then overcoating the conductive layer with a photoconductive solution to form a volatilizable organic photoconductive layer. The conductive layer, comprising a quaternary ammonium polyelectrolyte and a surfactant, provides an electrode for the photoconductive layer and has improved electrical and physical properties compared to prior conductive layers.
Abstract:
In process for forming a coating of phosphor particles on a fluorescent lamp glass, a polymer is deposited on the phosphor particles and the phosphor particles are entrained in a carrier gas with the polymer in a non-adhering state, and then the phosphor particles are coated on the fluorescent lamp glass with the polymer in an adhering state for retaining the phosphor particles on the fluorescent glass and, the coated fluorescent glass is heated to a temperature above the decomposition temperature of the polymer for removing the polymer and to form a coating of phosphor particles on a fluorescent lamp glass.
Abstract:
A process is provided for fabricating a multiplex screen structure for a color cathode ray tube whereof the window areas of a webbing structure are smaller than the apertures of a spatially related pattern member. The screen structure comprises a first apertured webbing of an opaque electrical conductive material formed by photo-processing on the inner surface of the tube viewing panel. A second apertured webbing of a substantially opaque material is electrophoretically superposed over the first webbing to provide a duo-webbing whereof the apertures are in alignment. The electrophoretic deposition of the second webbing produces a narrow mat-like encompassment within the perimeter of each aperture in the first webbing to effect a reduced-in-size second webbing aperture or window. An array of phosphor elements are formed to overlay the window areas, whereupon a reflective metallic backing is applied.
Abstract:
A uniform dark layer of soot is cataphoretically deposited from a suspension of soot in insulating hydrocarbons on an aluminized phosphor screen of a color display tube in which the aluminum layer serves as one electrode and a shadow mask serves as the other electrode and the potential difference between the electrodes is maintained during decanting the suspension.