摘要:
A takeoff location and a landing location are received for an autonomous vertical takeoff and landing (VTOL) vehicle that includes a plurality of rotors. An autonomous and noise-reduced flight trajectory for the autonomous VTOL vehicle is determined based at least in part on the takeoff location, the landing location, a jerk function, and a noise function, including by minimizing the jerk function and minimizing the noise function. A set of one or more desired forces or moments is determined for the autonomous VTOL vehicle based at least in part on autonomous and noise-reduced flight trajectory. A plurality of motor control signals is determined for the plurality of rotors based at least in part on the set of one or more desired forces or moments.
摘要:
A fitness equipment energy regenerating and saving system is provided. The system includes a bidirectional power converter, a bidirectional power drive, a generator, and an energy managing circuit. The energy managing circuit activates the bidirectional power converter so as to enable the bidirectional power drive to feedback the power generated by the generator to an electrical grid when the generator is operated in a generator mode. The energy managing circuit sets the bidirectional power converter to a current-regulating mode so as to enable the bidirectional power drive to obtain the power required for driving from the electrical grid when the generator is operated in a motor mode.
摘要:
A control device includes a drive controller that controls the driving of an electromagnetic coil, and a regeneration controller that controls the regeneration of power from the electromagnetic coil. The drive controller includes an excitation interval setting unit that sets excitation and non-excitation intervals such that voltage is applied to the electromagnetic coil during the excitation interval but is not applied during the non-excitation interval. The excitation and non-excitation intervals are symmetrical with centers that respectively correspond to the π/2 and π phase points of the induced voltage waveform. The regeneration controller includes a regeneration interval setting unit that sets regeneration and non-regeneration intervals such that power is regenerated from the electromagnetic coil during the regeneration interval but is not regenerated during the non-regeneration interval. The regeneration and non-regeneration intervals are symmetrical with centers that respectively correspond to the π/2 and π phase points of the induced voltage waveform.
摘要:
A control device includes a drive controller that controls the driving of an electromagnetic coil, and a regeneration controller that controls the regeneration of power from the electromagnetic coil. The drive controller includes an excitation interval setting unit that sets excitation and non-excitation intervals such that voltage is applied to the electromagnetic coil during the excitation interval but is not applied during the non-excitation interval. The excitation and non-excitation intervals are symmetrical with centers that respectively correspond to the π/2 and π phase points of the induced voltage waveform. The regeneration controller includes a regeneration interval setting unit that sets regeneration and non-regeneration intervals such that power is regenerated from the electromagnetic coil during the regeneration interval but is not regenerated during the non-regeneration interval. The regeneration and non-regeneration intervals are symmetrical with centers that respectively correspond to the π/2 and π phase points of the induced voltage waveform.
摘要:
Regenerated power from actuation loads of an aircraft may be returned to the distribution bus of the aircraft. In the past, actuators were either hydrostatic or pneumatic. With the furtherance of more electric architecture (MEA) aircraft, there has been an increase in electrical actuation modes. The power or current exchange between electrical buses and the electromechanical and electro-hydrostatic flight control actuators is bidirectional, resulting in a need to accommodate regenerative power. Conventional methods may use shunt regulation to dissipate regenerated power. These methods require additional cooling to reject the heat generated. This regenerated power is wasted as dissipated heat. The present invention, on the other hand, may dump the regenerated power back to a power sink, such as into ancillary electrical loads or to the starter/generator as mechanical (kinetic) energy. In the present invention, the energy may not be wasted nor may it generate excessive heat that needs to be dissipated.
摘要:
A motor control apparatus can protect circuit elements in an appropriate manner while preventing an incorrect abnormality determination when a motor is in regeneration operation, etc. The apparatus includes a target current calculation section (51), a drive control section (52) that generates a drive signal based on a current deviation ΔI between a target current (IMT) and a detected current (IMS), an abnormality determination section (53) that generates an abnormality determination signal based on the target current (IMT) and the detected current (IMS), and a regeneration operation determination section (59) that determines whether the motor (4) is in a regeneration operation state. When it is determined that the motor (4) is in a regeneration operation, a determination threshold of the abnormality determination section (53) is set to a value larger than a determination threshold during power running operation.
摘要:
The invention is directed to the provision of a converter apparatus, an inverter apparatus, and a DC link voltage control method, wherein the upper limit value of the DC link voltage that rises due to regenerative energy occurring from a motor is set high, thereby increasing the regenerative energy to be stored in a DC link. The converter apparatus (10) comprises: a voltage detection part (11) for monitoring the DC link voltage occurring across the DC link (30); and a charge stopping part (12) for stopping charging a power storage part (C) when the detected value of the DC link voltage exceeds a predetermined upper limit voltage as the motor (3) is decelerated.
摘要:
A power conversion system for driving a load is provided. The power conversion system comprises a power transformer having at least one primary winding circuit and at least one secondary winding circuit, the primary winding circuit being electrically connectable to an AC power source. The system further comprises at least one power cell, each of the at least one power cell having a power cell input connected to a respective one of the at least one secondary winding circuit. Each power cell also has a single phase output connectable to the load. An SCR arrangement including a gate drive and at least one SCR is connected to the power cell input and a DC bus. An SCR controller is connected to the SCR arrangement and the power cell input. The power cell also has a PWM output stage having a plurality of PWM switches connected to the DC bus and the single phase output. A local modulation controller is connected to the PWM output stage. The SCR arrangement and the SCR controller are configured for controlling a DC bus voltage, the PWM switches are configured for controlling power flow to the single phase output, and the local modulation controller is configured for controlling activation of the PWM power switches. The power conversion system further comprises a master controller in communication with the SCR controller and the local modulation controller of each of the at least one power cell. The master controller is connectable to the load to monitor power flow thereto.
摘要:
A power conversion system for driving a load is provided. The power conversion system comprises a power transformer having at least one primary winding circuit and at least one secondary winding circuit, the primary winding circuit being electrically connectable to an AC power source. The system further comprises at least one power cell, each of the at least one power cell having a power cell input connected to a respective one of the at least one secondary winding circuit. Each power cell also has a single phase output connectable to the load. An SCR arrangement including a gate drive and at least one SCR is connected to the power cell input and a DC bus. An SCR controller is connected to the SCR arrangement and the power cell input. The power cell also has a PWM output stage having a plurality of PWM switches connected to the DC bus and the single phase output. A local modulation controller is connected to the PWM output stage. The SCR arrangement and the SCR controller are configured for controlling a DC bus voltage, the PWM switches are configured for controlling power flow to the single phase output, and the local modulation controller is configured for controlling activation of the PWM power switches. The power conversion system further comprises a master controller in communication with the SCR controller and the local modulation controller of each of the at least one power cell. The master controller is connectable to the load to monitor power flow thereto.
摘要:
A motor drive apparatus is provided in an injection molding machine in order to supply electrical energy to a motor. The motor drive apparatus includes an electricity accumulation unit for accumulating electrical energy; and an electricity accumulation circuit for accumulating in the electricity accumulation unit electrical energy regenerated from the motor during a deceleration period of the motor and for supplying the electrical energy accumulated in the electricity accumulation unit to the motor during an acceleration period of the motor. By virtue of the above-described structure, when a heavy member such as a screw of an injection apparatus or a movable platen of a mold clamping apparatus is moved at high speed in each molding cycle, at the beginning of movement or during an acceleration period of the motor, the electricity accumulation circuit adds the electrical energy accumulated in the accumulation unit to electrical energy that is supplied from a power source to the motor, and during a deceleration period of the motor, electrical energy regenerated from the motor is accumulated in the accumulation unit.