Abstract:
To protect electromagnetic ballasts against damage, driver circuits for coupling the electromagnetic ballasts to light circuits comprising light emitting diodes are provided with rectifier bridges for exchanging first current signals with the electromagnetic ballasts and for providing second current signals to the light circuits, and with protection circuits for protecting the electromagnetic ballasts against parameters of the first current signals obtaining values larger than threshold values. The parameters may be direct-current components of the first current signals and may be average values of rectified versions of the first current signals/peak values of the first current signals. The rectifier bridges may comprise first diode elements. The protection circuits may comprise second diode elements serially coupled to the first diode elements. The protection circuit may comprise average value detectors/peak value detectors and may comprise switches for, in response to detection results, interrupting the second current signals.
Abstract:
A control device of a driving circuit of a discharge lamp is described. The driving circuit comprises an half bridge with a high side and a low side switches and the control device comprises a first device configured to control the switching frequency of the half bridge and a second device configured to detect the saturation current condition of the choke or the over current condition by detecting, cycle by cycle, a signal representative of the current passing through the low side switch. The second device generate a signal to cause the turning off of the low side switch and the turning on of the high side switch when the saturation current or over current condition of the choke is detected.
Abstract:
A ballast (e.g. a fluorescent light ballast) includes a primary ballast for powering the lamp from a power supply (e.g., utility line power) and an battery powered ballast for powering the lamp from a battery when the primary power supply is not energized by the power supply. When power supply power is restored to the ballast, the ballast shuts down the battery powered ballast and a switch circuit operably connects the lamp to the primary ballast. The ballast toggles the switch circuit such that the primary ballast detects replacement of a lamp and resets any fault detection or protection circuits (e.g., an end of lamp life circuit) that may have been triggered during the transition from battery power to power from the power supply.
Abstract:
A ballast (e.g. a fluorescent light ballast) includes a primary ballast for powering the lamp from a power supply (e.g., utility line power) and an battery powered ballast for powering the lamp from a battery when the primary power supply is not energized by the power supply. When power supply power is restored to the ballast, the ballast shuts down the battery powered ballast and a switch circuit operably connects the lamp to the primary ballast. The ballast toggles the switch circuit such that the primary ballast detects replacement of a lamp and resets any fault detection or protection circuits (e.g., an end of lamp life circuit) that may have been triggered during the transition from battery power to power from the power supply.
Abstract:
High voltage stress on the semiconductor devices at light load conditions, high total harmonic distortion (THD) of the line current, and poor crest factor (CF) of lamp current of "charge pump" electronic ballast circuits make them difficult to manufacture cost-effectively. To overcome these deficiencies, the DC bus voltage is reduced at light loads by providing a second resonance. One technique, high-frequency second-stage resonance, provides sufficient preheating at low V.sub.dc. Combined with the instant startup and the proper restart scheme, this technique can greatly reduce the maximum V.sub.dc at ignition. Another technique, low-frequency second-stage resonance, can reduce the steady state V.sub.dc at light loads, including during start-up. Consequently, high ignition voltage can be continuously impressed on the lamp without increasing V.sub.dc. Further, a diode clamping technique smooths the envelope of V.sub.a, thereby achieving near unity power factor, low THD and low CF without close-loop control.
Abstract:
A dimmable instant-start ballast for a plurality of LED lamps and/or a plurality of fluorescent lamps is provided, which includes an isolated dimming interface, a duty control device, a dimming switch, and an inverter circuit. The isolated dimming interface receives a dimming signal to generate a dimming voltage. The duty control device generates an operation signal according to the dimming voltage. The dimming switch periodically couples a first node to a ground according to the operation signal. The inverter circuit receives a rectified voltage and is coupled to the first node. When the first node is coupled to the ground terminal, the inverter circuit provides a lamp current for the LED lamps and/or the fluorescent lamps.
Abstract:
In various embodiments, a method for powering light sources from a input power supply through a converter circuit is provided including a primary side and a secondary side separated by a galvanic barrier, wherein the primary side includes a power factor control block with an output capacitor. The method may include providing save circuitry on said secondary side for saving operational data of the converter upon failure of said input power supply; and powering said save circuitry during saving said operational data with energy derived from said output capacitor of said power factor control block.
Abstract:
A controller which receives electric power required for operating through a driving voltage terminal and controls a converting circuit to convert an input voltage into an output voltage is provided. The controller is latched to stop providing a part or all of functions until the input voltage is removed. Therefore, the issues of the converting circuit in related arts in shortened life-span and safety of users due to can be avoided in the present invention.
Abstract:
A method and apparatus for protecting a discharge lamp lighting device from damage due to mis-wiring of a source of electrical power to the discharge lamp lighting device. The protection apparatus includes a detector, a comparer and an inhibitor. The detector samples at least one monitor point associated with the discharge lamp lighting device to obtain at least one detection voltage. The comparer compares the at least one detection voltage with a reference voltage. The inhibitor inhibits an operation of the discharge lamp lighting device when the comparer determines that a mis-wiring of the source of electrical power to the discharge lamp lighting device exists.