Abstract:
Ballast water treatment apparatus and methods for preventing foreign aquatic invasive species form entering marine ecological zones by translocation in ship's ballast water. The apparatus includes a housing, a filter member, and UV water treatment chambers. Methods include use of a ship's fire hydrant system or ballast water discharge port for moving ballast water from the ship's ballast tanks into the apparatus for filtration and treatment. In-port service vessels and barges as well as dock-side service vehicles are equipped with the various treatment and filtration apparatus to provided in-port or dock-side ballast water treatment services. Related methods are also provided.
Abstract:
Aquatic nuisance species (ANS) in ship's ballast water are killed by permeating to equilibrium a gaseous mixture consisting essentially of, preferably, ≧84% nitrogen, ≧11% carbon dioxide and ≦4% oxygen through ship's ballast water until the ballast water itself becomes (i) hypercapnic to ≧20 ppm carbon dioxide, and, by association, (ii) acidic to pH ≦7, while preferably further, and also, being rendered (iii) hypoxic to ≦1 ppm oxygen. The permeating is preferably realized by bubbling the gaseous mixture preferably obtained from an inert gas generator through the ballast water over the course of 2+ days while the ballast water is continually maintained a pressure less than atmosphere, preferably −2 p.s.i. or less. The (i) hypercapnic, (ii) acidic and (iii) hypoxic conditions—each of which can be independently realized—synergistically cooperate to kill a broad range of ANS in the ballast water without deleterious effect on the environment when, and if, the ballast water in which the balance of dissolved gases has been changed is discharged.
Abstract:
A water deaerating system and method are provided. The first end of an open-ended conduit is placed beneath the surface of a body of oxygen-rich water. The conduit extends into a housing and where the second end of the conduit resides at a location in the housing that is above the surface of the body of oxygen-rich water. A vacuum is applied to a spatial region defined within the housing above the location of the second end of the conduit. The oxygen-rich water is pumped through the conduit and exits the second end of the conduit to enter the spatial region of the housing. The oxygen-rich water descends through the housing due to gravity. The oxygen-rich water's descension is interrupted and the vacuum operates to remove oxygen from the oxygen-rich water so-descending to generate oxygen-depleted water.
Abstract:
A method and system of ozone treatment diverts a portion of water from a flow of water in a conduit; injects an ozone-containing gas into the portion to provide an ozonated portion; recombines the ozonated portion with the flow of water in the conduit; and controls and regulates the diverted portion to provide a minimum diverted portion flow rate according to flow in the conduit and proportion of ozone in the injected gas.
Abstract:
Ballast water treatment apparatus and methods for preventing foreign aquatic invasive species form entering marine ecological zones by translocation in ship's ballast water. The apparatus includes a housing, a filter member, and UV water treatment chambers. Methods include use of a ship's fire hydrant system for moving ballast water from the ship's ballast tanks into the apparatus for filtration and treatment. In-port service vessels and dock-side service vehicles are equipped with the treatment and filtration apparatus to provided in-port or dock-side ballast water treatment services. Related methods are also provided.
Abstract:
There is described a process for the treatment of water to prevent the survival of unwanted organisms in said water. The process is based on the supply of gas into the water at pressures greater than 1 atmosphere, while ensuring that the mass transport of gas into the water is greater than the mass loss across the air-water (surface) interface, i.e. such that a gas super-saturated condition is established. Further, there is described an apparatus or system for the treatment of a body of water, i.e. to prevent the survival of organisms in said water. A preferable embodiment comprises a compressor which delivers a compressed gas to said water system in an amount sufficient to establish a supersaturated condition in said body of water.
Abstract:
The present invention relates to a composition and a method for reducing the level of oxygen, preferably dissolved oxygen in an aqueous environment. The composition comprises deoxygenating microorganisms that, when growing, consume the oxygen that is present in the environment. The effect of reducing the oxygen level in the environment causes the death or inhibition of other undesired living organisms, prokaryotes as well as eukaryotes.
Abstract:
A method and system of ozone treatment diverts a portion of water from a flow of water in a conduit, injects ozone into the portion to provide an ozonated portion, and recombines the ozonated portion with the flow of water in the conduit. Another method and system identifies a species-destructive reaction product of ozone with a water constituent, determines a life of the reaction product, and contacts ozone with a water containing the species for a period determined according to the determined life of the reaction product.
Abstract:
Method for reducing harmful organisms on surfaces in contact with continuously or periodically flowing currents of cooling water used for throughflow cooling without recirculation, wherein the harmful organisms are algae, mussels and slime forming organisms, by periodically adding an aqueous treatment agent containing at least one peroxycarboxylic acid with 1 to 6 C atoms to the flowing water once every 5 to 100 hours over a period of 3 to 60 minutes in an amount corresponding to at least 1 ppm of peroxycarboxylic acid to reduce growth of the organisms on the surfaces.